Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detaillierter Blick auf molekularen Gifttransporter

30.05.2017

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der Zellmembran sitzen molekulare Pumpen, die schädliche Stoffe im Zellinnern erkennen und nach aussen spedieren.


Das Transportprotein ABCG2 (Mitte) ist in die Zellmembran eingebettet. Es erkennt im Zellinnern (unten) über 200 Stoffe und transportiert diese nach aussen (oben).

ETH Zürich / Scott Jackson, Ioannis Manolaridis, Kaspar Locher

Forschende der ETH Zürich und vom Biozentrum der Universität Basel haben nun die dreidimensionale Struktur eines solchen Transportproteins beim Menschen – des Proteins ABCG2 – auf atomarer Ebene aufgeklärt.

Es ist dies die erste solche Struktur für einen menschlichen multispezifischen Arzneistofftransporter (engl. multi-drug transporter), die nun bekannt ist. Die Wissenschaftler veröffentlichten ihre Arbeit in der jüngsten Ausgabe des Fachmagazins Nature.

«Das Protein ABCG2 erkennt und transportiert mindestens 200 bekannte Stoffe», erklärt Kaspar Locher, Professor für Molekulare Membranbiologie an der ETH Zürich und Leiter der Studie. Zu diesen Stoffen gehören Alkaloide – Pflanzeninhaltsstoffe, die wir über die Nahrung aufnehmen –, aber auch körpereigene Stoffe wie Harnsäure oder der Hämoglobin-Abbaustoff Bilirubin.

Aktiv ist das Protein unter anderem in der Darmwand, wo es schädliche Stoffe daran hindert, ins Blut zu gelangen, oder in den Zellen der Blut-Hirn-Schranke, wo es Giftstoffe vom Gehirn fernhält. Bedeutend sind Proteine wie ABCG2 auch in Milchdrüsen und in der Plazenta. Dort sorgen sie dafür, dass Giftstoffe nicht in die Muttermilch gelangen oder in den Blutkreislauf eines ungeborenen Kindes.

Zweischneidiges Schwert

Allerdings hat die Funktion von multispezifischen Arzneistofftransportern eine Kehrseite: Die Proteine pumpen auch gewisse Medikamente aus den Zellen und verhindern so, dass diese im Zellinnern wirken. «Bei der Entwicklung von Medikamenten muss daher immer untersucht werden, ob sie von Transportproteinen wie ABCG2 erkannt werden», sagt Locher.

Medikamente, die oral verabreicht werden, müssen die Darmwand durchdringen, und solche, die im Gehirn wirken sollen, müssen die Blut-Hirn-Schranke passieren. Sie können dies nur, wenn ABCG2 sie nicht erkennt.

Von einigen Krebsmedikamenten (Chemotherapeutika) hingegen ist bekannt, dass ABCG2 sie erkennt. Dies ist gravierend, weil gewisse Tumorzellen in der Lage sind, die Zahl der ABCG2-Proteine in ihrer Zellmembran zu erhöhen. Solchen Zellen pumpen Chemotherapeutika effizient nach aussen – sie sind gegen die Medikamente resistent.

Medikamentenentwicklung mit dem Computer

Dank der nun bekannten Struktur von ABCG2 könnten Wissenschaftler künftig am Computer simulieren, ob das Transportprotein neue Arzneimittel erkennen kann. Ebenfalls mithilfe von Computermodellierungen könnten Forschende bessere Antikörper für die Diagnose medikamentenresistenter Krebszellen entwickeln oder Wirkstoffe, welche das Transportprotein hemmen.

Mit solchen Wirkstoffen könnten bestimmte Resistenzen gegenüber Chemotherapeutika überwunden werden. «Die Beiträge unserer Forschung für die Medizin und insbesondere die Krebsmedizin sind jedoch längerfristig zu sehen. Wir liefern in erster Linie die Grundlage», betont Locher.

ABCG2 ist ein sehr bewegliches Molekül. Es war deshalb schwierig, das Molekül für die Aufklärung seiner atomaren Struktur festzuhalten. Mithilfe von stabilisierenden Antikörpern ist es den Wissenschaftlern jedoch gelungen, das Protein zu immobilisieren.

Die dreidimensionale Struktur bestimmten die ETH-Forschenden in Zusammenarbeit mit Henning Stahlberg, Professor am Biozentrum der Universität Basel, und seiner Gruppe mittels der Kryo-Elektronenmikroskopie.

«Wir haben in der letzten Zeit intensiv daran gearbeitet, unsere Elektronenmikroskope in deren Auflösungsvermögen zu optimieren und gleichzeitig weitgehend zu automatisieren. So haben wir eine unglaublich schnelle Analysepipeline geschaffen», sagt Stahlberg.

Die Kryo-Elektronenmikroskopie ist eine verhältnismässig neue Technologie zur Aufklärung atomarer Molekülstrukturen. «Die Technik hat in der Strukturbiologie eine Revolution ausgelöst», sagt Locher. In Anbetracht dieser Bedeutung wird die ETH Zürich weiter in die Methode investieren und am Mikroskopiezentrum ScopeM ein zweites hochauflösendes Kryo-Elektronenmikroskop anschaffen. Es wird allen Wissenschaftlern der Life Sciences zur Verfügung stehen, um Moleküle und Strukturen mit atomarer Auflösung zu untersuchen.

Die Studie wurde finanziert vom Nationalen Forschungsschwerpunkt (NFS) Transcure [http://www.nccr-transcure.ch].

Literaturhinweis

Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP: Structure of the human multidrug transporter ABCG2. Nature, 29. Mai 2017, doi: 10.1038/nature22345 [http://dx.doi.org/10.1038/nature22345]

Hochschulkommunikation | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schweiss auf Knopfdruck beseitigen
19.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Gen-Radiergummi: Neuer Behandlungsansatz bei chronischen Erkrankungen
19.11.2018 | Universitätsmedizin Göttingen - Georg-August-Universität

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungsnachrichten

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungsnachrichten

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics