Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detaillierter Blick auf molekularen Gifttransporter

30.05.2017

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der Zellmembran sitzen molekulare Pumpen, die schädliche Stoffe im Zellinnern erkennen und nach aussen spedieren.


Das Transportprotein ABCG2 (Mitte) ist in die Zellmembran eingebettet. Es erkennt im Zellinnern (unten) über 200 Stoffe und transportiert diese nach aussen (oben).

ETH Zürich / Scott Jackson, Ioannis Manolaridis, Kaspar Locher

Forschende der ETH Zürich und vom Biozentrum der Universität Basel haben nun die dreidimensionale Struktur eines solchen Transportproteins beim Menschen – des Proteins ABCG2 – auf atomarer Ebene aufgeklärt.

Es ist dies die erste solche Struktur für einen menschlichen multispezifischen Arzneistofftransporter (engl. multi-drug transporter), die nun bekannt ist. Die Wissenschaftler veröffentlichten ihre Arbeit in der jüngsten Ausgabe des Fachmagazins Nature.

«Das Protein ABCG2 erkennt und transportiert mindestens 200 bekannte Stoffe», erklärt Kaspar Locher, Professor für Molekulare Membranbiologie an der ETH Zürich und Leiter der Studie. Zu diesen Stoffen gehören Alkaloide – Pflanzeninhaltsstoffe, die wir über die Nahrung aufnehmen –, aber auch körpereigene Stoffe wie Harnsäure oder der Hämoglobin-Abbaustoff Bilirubin.

Aktiv ist das Protein unter anderem in der Darmwand, wo es schädliche Stoffe daran hindert, ins Blut zu gelangen, oder in den Zellen der Blut-Hirn-Schranke, wo es Giftstoffe vom Gehirn fernhält. Bedeutend sind Proteine wie ABCG2 auch in Milchdrüsen und in der Plazenta. Dort sorgen sie dafür, dass Giftstoffe nicht in die Muttermilch gelangen oder in den Blutkreislauf eines ungeborenen Kindes.

Zweischneidiges Schwert

Allerdings hat die Funktion von multispezifischen Arzneistofftransportern eine Kehrseite: Die Proteine pumpen auch gewisse Medikamente aus den Zellen und verhindern so, dass diese im Zellinnern wirken. «Bei der Entwicklung von Medikamenten muss daher immer untersucht werden, ob sie von Transportproteinen wie ABCG2 erkannt werden», sagt Locher.

Medikamente, die oral verabreicht werden, müssen die Darmwand durchdringen, und solche, die im Gehirn wirken sollen, müssen die Blut-Hirn-Schranke passieren. Sie können dies nur, wenn ABCG2 sie nicht erkennt.

Von einigen Krebsmedikamenten (Chemotherapeutika) hingegen ist bekannt, dass ABCG2 sie erkennt. Dies ist gravierend, weil gewisse Tumorzellen in der Lage sind, die Zahl der ABCG2-Proteine in ihrer Zellmembran zu erhöhen. Solchen Zellen pumpen Chemotherapeutika effizient nach aussen – sie sind gegen die Medikamente resistent.

Medikamentenentwicklung mit dem Computer

Dank der nun bekannten Struktur von ABCG2 könnten Wissenschaftler künftig am Computer simulieren, ob das Transportprotein neue Arzneimittel erkennen kann. Ebenfalls mithilfe von Computermodellierungen könnten Forschende bessere Antikörper für die Diagnose medikamentenresistenter Krebszellen entwickeln oder Wirkstoffe, welche das Transportprotein hemmen.

Mit solchen Wirkstoffen könnten bestimmte Resistenzen gegenüber Chemotherapeutika überwunden werden. «Die Beiträge unserer Forschung für die Medizin und insbesondere die Krebsmedizin sind jedoch längerfristig zu sehen. Wir liefern in erster Linie die Grundlage», betont Locher.

ABCG2 ist ein sehr bewegliches Molekül. Es war deshalb schwierig, das Molekül für die Aufklärung seiner atomaren Struktur festzuhalten. Mithilfe von stabilisierenden Antikörpern ist es den Wissenschaftlern jedoch gelungen, das Protein zu immobilisieren.

Die dreidimensionale Struktur bestimmten die ETH-Forschenden in Zusammenarbeit mit Henning Stahlberg, Professor am Biozentrum der Universität Basel, und seiner Gruppe mittels der Kryo-Elektronenmikroskopie.

«Wir haben in der letzten Zeit intensiv daran gearbeitet, unsere Elektronenmikroskope in deren Auflösungsvermögen zu optimieren und gleichzeitig weitgehend zu automatisieren. So haben wir eine unglaublich schnelle Analysepipeline geschaffen», sagt Stahlberg.

Die Kryo-Elektronenmikroskopie ist eine verhältnismässig neue Technologie zur Aufklärung atomarer Molekülstrukturen. «Die Technik hat in der Strukturbiologie eine Revolution ausgelöst», sagt Locher. In Anbetracht dieser Bedeutung wird die ETH Zürich weiter in die Methode investieren und am Mikroskopiezentrum ScopeM ein zweites hochauflösendes Kryo-Elektronenmikroskop anschaffen. Es wird allen Wissenschaftlern der Life Sciences zur Verfügung stehen, um Moleküle und Strukturen mit atomarer Auflösung zu untersuchen.

Die Studie wurde finanziert vom Nationalen Forschungsschwerpunkt (NFS) Transcure [http://www.nccr-transcure.ch].

Literaturhinweis

Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP: Structure of the human multidrug transporter ABCG2. Nature, 29. Mai 2017, doi: 10.1038/nature22345 [http://dx.doi.org/10.1038/nature22345]

Hochschulkommunikation | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics