Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der zelluläre Müllbeutel

13.01.2016

Bei der Autophagozytose, dem Prozess der Abfallverwertung in den Zellen werden molekularen Müllbeutel hergestellt. Wie jetzt in Nature Communications berichtet, haben Wissenschaftler vom Max-Plack-Institut für Biochemie in Martinsried einen molekularen Klebstoff entdeckt, der das Ausgangsmaterial für die Müllbeutel, kleinen Fettbläschen, zusammenklebt. Die Autophagozytose hilft Krebszellen eine Chemotherapiebehandlung zu überleben. Deshalb könnte ein den Wissenschaftlern bekannter Hemmstoff für den molekularen Kleber die Grundlage für eine neue Krebs-Therapie sein.

Autophagozytose ist ein wichtiger Prozess der zellulären Abfallverwertung. Dieser liefert ungewünschtes oder geschädigtes Material aus dem Zellplasma an das Lysosom, die Recyclinganlage der Zellen. Dafür werden besondere Müllbeutel, sogenannte Autophagosomen hergestellt, die den Abfall erkennen, einschließen und an die Recyclinganlage weiterleiten.


Zwei Atg9-Fettbläschen (orange), werden durch den Atg1-Kinasekomplex (blau) verbunden. Diese Fettbläschen sind das Ausgangsmaterial für zelluläre Müllbeutel.

Für die Herstellung dieser speziellen Müllbeutel sind zwei Eiweißkomponenten notwendig. Eines ist Atg9, ein Membraneiweiß, das in kleinen Vesikeln, eine Art Fettbläschen, eingelagert ist, die das Ausgangsmaterial für den Autophagosom-Müllbeutel bilden.

Die zweite Komponente ist der Atg1-Kinasekomplex, ein großer Eiweißkomplex, der aus fünf Untereinheiten besteht. Die Wissenschaftler haben jetzt herausgefunden, wie die beiden Komponenten an der Herstellung des Autophagosoms beteiligt sind.

Die Wissenschaftler haben das Ausgangsmaterial für die Müllbeutel, die künstliche Atg9-Vesikel im Reagenzglas hergestellt. “Durch die Zugabe vom Atg1-Kinasekomplexes konnten wir zeigen, dass ein Atg1-Kinasekomplex zwei Atg9-Moleküle bindet und somit wie eine Art Klammer funktioniert und zwei Atg9-Vesikel miteinander verknüpft“ erklärt Yijian Rao aus dem Team von Thomas Wollert, Leiter der Abteilung Molekulare Membran- und Organell-Biologie.

Wenn kein Müll vorhanden ist, können zwei Untereinheiten des Atg1-Kinasekomplexes die Atg9-Bindungsstelle blockieren und so das Verknüpfen der Vesikel verhindern. Dann können keine Autophagosom-Müllbeutel entstehen. „Das heißt, das Verknüpfen der Membranen und die Herstellung des Müllbeutels wird durch die verschiedenen Untereinheiten der Atg1-Kinase kontrolliert“, erklärt Rao weiter.

Entscheidend für eine spätere medizinische Anwendung der Forschungsergebnisse ist ein kleines Peptid mit therapeutischem Potential. Die Wissenschaftler konnten zeigen, dass ein bestimmtes Peptid den Atg1-Kinasekompex in Hefezellen hemmt.

Da Atg1 und Atg9 sowohl in Hefezellen als auch in menschlichen Zellen vorkommt, gehen die Wissenschaftler davon aus, dass ein ähnlicher Wirkstoff die Autophagozytose in menschlichen Zellen hemmen kann.

Krebszellen nutzen die Autophagozytose, um eine Chemotherapiebehandlung zu überleben. Heutige Krebsmedikamente verursachen die Schädigung der Krebszellen, damit sie sterben. Leider werden bei dieser Behandlung nicht nur Krebszellen, sondern auch gesunde Zellen von den Medikamenten geschädigt.

Eine Möglichkeit, die Krebszellen empfindlicher zu machen, ist die Hemmung ihrer Autophagozytose. „Der Hemmstoff des Autophagozytose-Klebstoffes verhindert die Herstellung der Müllbeutel und stoppt die Autophagozytose sehr spezifisch. Dieses Peptid könnte die Grundlage für die Entwicklung eines Antikrebsmedikamentes sein oder die Effektivität eines heutigen Chemotherapie-medikamentes verbessern“, fasst Rao zusammen.

Originalpublikation:
Rao, Y., Perna, M.B., Hofmann, B., Beier, V., Wollert, T.: The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy. Nature Communications, Januar 12, 2016
Doi: 10.1038/NCOMMS10338

Kontakt:
Dr. Thomas Wollert
Molekulare Membran- und Organell-Biologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: wollert@biochem.mpg.de
www.biochem.mpg.de/wollert

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie
http://www.biochem.mpg.de/wollert - Webseite der Forschungsgruppe von Thomas Wollert

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics