Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der „TRiC” bei der Aktinfaltung

10.08.2018

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und Muskelkontraktion unterschiedliche Funktionen ausübt. Wie alle Proteine wird Aktin an den Ribosomen „geboren“. Dies sind die Proteinfabriken der Zellen, die Aminosäuren zu einer langen Kette zusammenfügen.


Die Aktin-Aminosäurekette (Mitte) wird im Hohlraum des Chaperonins TRiC in die korrekte 3D-Struktur gefaltet.

© Max-Planck-Gesellschaft

Neu synthetisierte Proteine an den Ribosomen sind noch nicht in der Lage, ihre molekularen Funktionen in der Zelle auszuüben. Um ihre volle Aktivität zu erreichen, müssen sie zunächst die richtige dreidimensionale Faltung annehmen.

Bislang glaubte man, dass nicht nur die Information fuer die fertig gefaltete Struktur eines Proteins, sondern auch die Anleitung für den Faltungsweg in der Aminosäuresequenz kodiert sind. Forscher der Abteilung „Zelluläre Biochemie“ des MPIB-Direktors F.-Ulrich Hartl haben nun nachgewiesen, dass dies für das universale Protein Aktin nicht der Fall ist.

Chaperone helfen bei der Proteinreifung

Kinder verfügen bereits bei der Geburt über die natürliche Fähigkeit, sich zu Erwachsenen zu entwickeln. Ihr Reifungsprozess benötigt Zeit und wird durch die elterliche Fürsorge unterstützt. Institutionen wie der Kindergarten helfen Kindern, diesen Prozess sicher zu durchlaufen, indem sie sie von schädlichen Einflüssen fernhalten.

Neu-synthetisierte Proteine werden von Chaperonen, molekularen Faltassistenten, vor intermolekularen Wechselwirkungen geschützt, die ihre Faltung behindern würden. Falsch gefaltete Proteine können toxische Klumpen bilden, die Zellen beschädigen und zur Entwicklung von Alzheimer und Parkinson beitragen. Obwohl sich Proteine auch in ihrer Abwesenheit falten können, unterstützen Chaperone daher die Zellgesundheit, indem sie die Effizienz der Faltung verbessern.

Anders als alle bislang untersuchten Proteine kann Aktin seine Faltung nicht ohne das Chaperonin TRiC erwerben. „In der Regel finden Proteine ihre Faltung spontan – Chaperone unterstützen sie lediglich dabei, indem sie den Prozess effizienter machen und das Protein vor Wechselwirkungen bewahren, die ihre Faltung behindern würden. Doch bei Aktin liegt der Fall anders – es benötigt unbedingt die molekulare Falthilfe von TRiC. Aktin ist wie ein Kind, das nie ein reifer Erwachsener wird, wenn es nicht den TRiC-Kindergarten besucht“, sagt der Erstautor der Studie David Balchin.

Im Vergleich zu ähnlichen Proteinen, die das Zytoskelett von Bakterien – evolutionär älteren und einfacheren Zellen – bilden, fanden die Forscher grundlegende Unterschiede bei der Proteinfaltung. „Aktin verfügt über viel mehr Proteininteraktionspartner als die bakteriellen Zytoskelettproteine, hat aber seine Fähigkeit zur eigenständigen Faltung verloren. Es scheint, als ob dieser molekulare Kompromiss die Vielseitigkeit des Aktins ermöglicht“, so Balchin. Durch die Koevolution von TRiC und Aktin konnte Aktin die Verantwortung für die Proteinfaltung an das Chaperonin „outsourcen”.

Die Struktur führt zur Funktion

Die Organisation von Bakterienzellen ist weniger komplex als die höher entwickelter Zellen. Bakterielle Zytoskelettproteine benötigen zum effizienten Erreichen eines Faltzustands ebenfalls die Hilfe von Chaperonen. Einfachere Chaperone, wie man sie in Bakterien findet, können Aktin nicht in seine reife Form falten.

Die Forscher klärten die Proteinstruktur von TRiC auf, um seine Funktion zu untersuchen, und stellten fest, dass es über einen speziellen Wirkmodus für die Aktinfaltung verfügt. Während bakterielle Chaperone sieben identische Untereinheiten umfassen, besteht TRiC aus acht unterschiedlichen Untereinheiten. Diese Untereinheiten bilden einen Hohlraum, in dessen Inneren das Aktin gefaltet wird.

„Während der Aktinfaltung verändert sich auch die TRiC-Struktur. Wir stellten eine asymmetrische Bewegung des Chaperons fest, die von der Bindung und Lyse des Energie transportierenden Moleküls ATP koordiniert wird. Dieser Vorgang ist weitaus komplexer als die bislang bekannte chaperonunterstützte Proteinfaltung.“

In der Studie zu Aktin wird erstmals ein sich nicht selbst faltendes Protein beschrieben. „Die Proteineigenschaften betreffend betreten wir mit unserer Studie Neuland“, sagt MPIB-Direktor F.-Ulrich Hartl. Der Nachweis dieser außergewöhnlichen Chaperonabhängigkeit bricht mit dem Dogma, dass alle Proteine in ihrer Aminosäuresequenz über die natürliche Fähigkeit zur Faltung verfügen.

„Aktin“, fügt Hartl hinzu, „ist nur ein Beispiel für Proteine, die durch TRiC gefaltet werden, wenn auch ein sehr prominentes. TRiC fungiert jedoch als Chaperon für etwa zehn Prozent aller Proteine. Wir fangen gerade erst an zu verstehen, welche Auswirkungen diese spezielle Unterstützung bei der ‚Proteinbetreuung‘ auf die Zellen hat.“ [CW]


Über F.-Ulrich Hartl
F.-Ulrich Hartl wurde 1957 geboren und studierte Medizin an der Universität Heidelberg, wo er anschließend auch promovierte. Als wissenschaftlicher Assistent wechselte er zu Walter Neupert an die Ludwig-Maximilians-Universität München. Ein Stipendium der Deutschen Forschungs-gemeinschaft ermöglichte ihm einen ersten Forschungsaufhalt an der University of California, Los Angeles. Als Professor und Investigator des Howard Hugh Medical Institute war er am Sloan-Kettering Institute und an der Cornell University in New York tätig. Im Jahr 1997 gelang es der Max-Planck-Gesellschaft den hochrangigen Wissenschaftler wieder nach Deutschland zurückzuholen. Seither leitet er am Max-Planck-Institut für Biochemie die Abteilung „Zelluläre Biochemie“.

Über das Max-Planck-Institut für Biochemie
Das Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München zählt zu den führenden internationalen Forschungseinrichtungen auf den Gebieten der Biochemie, Zell- und Strukturbiologie sowie der biomedizinischen Forschung und ist mit rund 35 wissenschaftlichen Abteilungen und Forschungsgruppen und ungefähr 800 Mitarbeitern eines der größten Institute der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Das MPIB befindet sich auf dem Life-Science-Campus Martinsried in direkter Nachbarschaft zu dem Max-Planck-Institut für Neurobiologie, Instituten der Ludwig-Maximilians-Universität München und dem Innovations- und Gründerzentrum Biotechnologie (IZB). http://biochem.mpg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. F.-Ulrich Hartl
Zelluläre Biochemie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried/München
E-mail: uhartl@biochem.mpg.de

www.biochem.mpg.de/hartl

Originalpublikation:

D. Balchin, G. Milicic, M. Strauss, M. Hayer-Hartl, F.-U. Hartl: Pathway of Actin Folding Directed by the Eukaryotic Chaperonin TRiC, Cell, August 2018

Weitere Informationen:

http://www.biochem.mpg.de/20180809-balchin-hartl

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bedeutung des „Ozeanwetters“ für Ökosysteme
21.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht In Form gebracht
21.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics