Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Kobold in der Zange

17.01.2018

Chemikerinnen in Rostock entwickelten einen neuen Katalysator auf Basis von Kobalt, bei dem das aktive Metallzentrum von einer Molekülstruktur zangenartig umklammert und damit fixiert wird. Dieser sogenannte „Cobalt Pincer Complex“ (Pincer, engl. = Zange) ermöglicht die Hydrierung von Estern zu Alkoholen, die einen typischen Syntheseschritt in der Chemie und Pharmazie darstellt. Der Cobalt-Pincer-Complex dient gleichsam als Modell für die künftige Entwicklung von Katalysatoren, die auf solchen Strukturen aufgebaut sind. Gleichzeitig wird mit Kobalt ein Nicht-Edelmetall verwendet, was in Hinblick auf mögliche chemische Anwendungen hilft, Kosten zu senken und Ressourcen zu sparen.

Das renommierte Fachmagazin „Chemistry - A European Journal“ stufte diese Arbeit zu den Cobalt-Pincer-Complexen aus dem Rostocker Leibniz-Institut für Katalyse, LIKAT, als sog. "hot paper" ein und lud Themenleiterin Dr. Kathrin Junge ein, ein Cover dazu zu gestalten.


Verschiedene Katalysatoren zu Testung im Labor

LIKAT nordlicht

Prinzipiell versteht man unter einem Katalysator, eine bestimmte chemische Verbindung, die durch ihre bloße Anwesenheit eine chemische Reaktion zu beschleunigen vermag. So ein Katalysator besteht aus einem reaktiven Metall-Zentrum, das durch eine Art Gerüst, dem Liganden, wie Chemiker es nennen, umgeben und damit fixiert ist. Die Funktion solcher Liganden lässt sich durch eine vorteilhafte räumliche Struktur unterstützen, und eine solche Struktur ist ein Pincer-Ligand, bei dem zwei Molekülarme des Liganden das reaktive Zentrum in die Mitte nehmen.

Chemisch wohldefiniert

In der anorganischen Chemie werden Pincer-Komplexe seit den siebziger Jahren untersucht. „Sie stellen eine chemisch wohldefinierte Umgebung dar“, erläutert Kathrin Junge den Vorteil gegenüber anderen Strukturen.

Das heißt u.a., mit der Struktur sind gleichzeitig die chemischen Eigenschaften für die Reaktion definiert. Mit ihrem Team am LIKAT verwendet Kathrin Junge dieses Wissen nun für die organische Chemie, die sich mit der Umwandlung von Kohlenstoffverbindungen befasst.

Im konkreten Fall beschleunigt der Cobalt-Pincer-Komplex die Reduktion von Carbonsäureestern, die durch Anlagerung von Wasserstoff zu Alkohol umgewandelt werden. Diese Hydrierung ist ein wichtiger Schritt bei der Herstellung von Medikamenten bzw. pharmakologischen Wirkstoffen und auch bei der Synthese großtonnagiger Grundchemikalien.

Metall-Pincer-Komplexe werden schon seit ca. 5 Jahren im gesamten Arbeitskreis von Prof. Matthias Beller bearbeitet, der auch Direktor des LIAKTs ist und zu dem die Gruppe von Kathrin Junge gehört. Dabei wurden erste Erfahrungen mit Pincer-Strukturen zunächst anhand von Katalysatoren auf Ruthenium-Basis gesammelt.

Doch Ruthenium ist ein teures Edelmetall mit einer begrenzten Verfügbarkeit, weshalb der Trend in der Chemie aus Kosten- und Umweltgründen hin zur Verwendung von Nicht-Edelmetallen geht. Erste Versuche, Ruthenium durch Eisen zu ersetzen, liefen erfolgversprechend.

Kathrin Junge: „Die Frage war, ob sich auch andere Nicht-Edelmetalle in dieser molekularen Umgebung für leistungsfähige Katalysatoren nutzen lassen.“ Ihr Team wollte damit systematisch ein gängiges Modell neuartiger Katalysatoren schaffen, in denen sich eine Vielzahl von Nicht-Edelmetallen für unterschiedlichste Anwendungsfälle eignet.

Mittelalter: „verhextes“ Silber

Nach den ersten Erfolgen mit Eisen als reaktivem Zentrum nahmen sich Kathrin Junge und ihre Mitarbeiter die chemischen Elemente Mangan und Kobalt vor. Dabei ließen sich die Ergebnisse mit Kobalt weitaus weniger gut reproduzieren als mit Mangan. Kobalt habe seinem Namen alle Ehre gemacht, sagt Dr. Junge mit einem Schmunzeln.

Tatsächlich hatte es seinen Namen ursprünglich seiner „schwierigen“ Handhabung wegen bekommen. Im Mittelalter hielten Bergleute Kobalterz für Silbererz. Doch da es sich nicht wie gewohnt verarbeiten ließ, dachten sie, es sei von Kobolden „verhextes“ Silber und nannten es Kobolderz, Kobalt.

Es seien „viele, viele Versuche“ im Labor notwendig gewesen, sagt Kathrin Junge, bevor sie „mit Erfahrung, Knowhow und auch etwas Glück“ einen katalytisch aktiven Cobalt-Pincer-Katalysator gefunden hat. Damit liege nun ein leistungsfähiges Modell vor, dass bei recht milden Reaktionsbedingungen arbeitet, nämlich bei Temperaturen von 120 Grad Celsius und Drücken von maximal 50 bar. Das stellt gegenüber bisherigen Katalyse-Komplexen eine deutliche Verbesserung dar.

Industrie ist interessiert

Ein weiterer Vorteil des Cobalt-Pincer-Katalysators besteht darin, dass er selektiv arbeitet und die sogenannten funktionellen Gruppen im Molekül nicht angreift. Katalysereaktionen laufen ja mit meist sehr komplexen Verbindungen ab, in denen bestimmte Molekülgruppen für spezifische Eigenschaften sorgen und deshalb erhalten bleiben sollen. Und die dürfen während einer Katalysereaktion nicht beschädigt oder beeinträchtigt werden.

Als nächstes werden sich Kathrin Junge und ihre Arbeitsgruppe den Elementen Kupfer und Zink zuwenden, um das Modell durch weitere Elemente auszubauen. Es ist klassische Grundlagenforschung, die sie hier betreiben, und da sie dabei keinerlei Patente anmelden, kann jedermann sie nutzen.

In der Industrie verfolgen die Kollegen sehr genau die Veröffentlichungen aus dem Arbeitskreis von Prof. Matthias Beller bzw. der Gruppe um Kathrin Junge. Ihr hot paper war kaum erschienen, da die ist Forscherin schon daraufhin angesprochen worden. Auch dies zeige die Bedeutung dieser aktuellen Arbeit aus dem LIKAT.

Original-Paper
Chemistry – A European Journal. DOI: 10.1002/chem.201705201

Dr. Barbara Heller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.catalysis.de

Weitere Berichte zu: Katalysator Katalyse Kobalt Kobold LIKAT Leibniz-Institut Liganden Mangan Ruthenium Zange

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics