Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Kobold in der Zange

17.01.2018

Chemikerinnen in Rostock entwickelten einen neuen Katalysator auf Basis von Kobalt, bei dem das aktive Metallzentrum von einer Molekülstruktur zangenartig umklammert und damit fixiert wird. Dieser sogenannte „Cobalt Pincer Complex“ (Pincer, engl. = Zange) ermöglicht die Hydrierung von Estern zu Alkoholen, die einen typischen Syntheseschritt in der Chemie und Pharmazie darstellt. Der Cobalt-Pincer-Complex dient gleichsam als Modell für die künftige Entwicklung von Katalysatoren, die auf solchen Strukturen aufgebaut sind. Gleichzeitig wird mit Kobalt ein Nicht-Edelmetall verwendet, was in Hinblick auf mögliche chemische Anwendungen hilft, Kosten zu senken und Ressourcen zu sparen.

Das renommierte Fachmagazin „Chemistry - A European Journal“ stufte diese Arbeit zu den Cobalt-Pincer-Complexen aus dem Rostocker Leibniz-Institut für Katalyse, LIKAT, als sog. "hot paper" ein und lud Themenleiterin Dr. Kathrin Junge ein, ein Cover dazu zu gestalten.


Verschiedene Katalysatoren zu Testung im Labor

LIKAT nordlicht

Prinzipiell versteht man unter einem Katalysator, eine bestimmte chemische Verbindung, die durch ihre bloße Anwesenheit eine chemische Reaktion zu beschleunigen vermag. So ein Katalysator besteht aus einem reaktiven Metall-Zentrum, das durch eine Art Gerüst, dem Liganden, wie Chemiker es nennen, umgeben und damit fixiert ist. Die Funktion solcher Liganden lässt sich durch eine vorteilhafte räumliche Struktur unterstützen, und eine solche Struktur ist ein Pincer-Ligand, bei dem zwei Molekülarme des Liganden das reaktive Zentrum in die Mitte nehmen.

Chemisch wohldefiniert

In der anorganischen Chemie werden Pincer-Komplexe seit den siebziger Jahren untersucht. „Sie stellen eine chemisch wohldefinierte Umgebung dar“, erläutert Kathrin Junge den Vorteil gegenüber anderen Strukturen.

Das heißt u.a., mit der Struktur sind gleichzeitig die chemischen Eigenschaften für die Reaktion definiert. Mit ihrem Team am LIKAT verwendet Kathrin Junge dieses Wissen nun für die organische Chemie, die sich mit der Umwandlung von Kohlenstoffverbindungen befasst.

Im konkreten Fall beschleunigt der Cobalt-Pincer-Komplex die Reduktion von Carbonsäureestern, die durch Anlagerung von Wasserstoff zu Alkohol umgewandelt werden. Diese Hydrierung ist ein wichtiger Schritt bei der Herstellung von Medikamenten bzw. pharmakologischen Wirkstoffen und auch bei der Synthese großtonnagiger Grundchemikalien.

Metall-Pincer-Komplexe werden schon seit ca. 5 Jahren im gesamten Arbeitskreis von Prof. Matthias Beller bearbeitet, der auch Direktor des LIAKTs ist und zu dem die Gruppe von Kathrin Junge gehört. Dabei wurden erste Erfahrungen mit Pincer-Strukturen zunächst anhand von Katalysatoren auf Ruthenium-Basis gesammelt.

Doch Ruthenium ist ein teures Edelmetall mit einer begrenzten Verfügbarkeit, weshalb der Trend in der Chemie aus Kosten- und Umweltgründen hin zur Verwendung von Nicht-Edelmetallen geht. Erste Versuche, Ruthenium durch Eisen zu ersetzen, liefen erfolgversprechend.

Kathrin Junge: „Die Frage war, ob sich auch andere Nicht-Edelmetalle in dieser molekularen Umgebung für leistungsfähige Katalysatoren nutzen lassen.“ Ihr Team wollte damit systematisch ein gängiges Modell neuartiger Katalysatoren schaffen, in denen sich eine Vielzahl von Nicht-Edelmetallen für unterschiedlichste Anwendungsfälle eignet.

Mittelalter: „verhextes“ Silber

Nach den ersten Erfolgen mit Eisen als reaktivem Zentrum nahmen sich Kathrin Junge und ihre Mitarbeiter die chemischen Elemente Mangan und Kobalt vor. Dabei ließen sich die Ergebnisse mit Kobalt weitaus weniger gut reproduzieren als mit Mangan. Kobalt habe seinem Namen alle Ehre gemacht, sagt Dr. Junge mit einem Schmunzeln.

Tatsächlich hatte es seinen Namen ursprünglich seiner „schwierigen“ Handhabung wegen bekommen. Im Mittelalter hielten Bergleute Kobalterz für Silbererz. Doch da es sich nicht wie gewohnt verarbeiten ließ, dachten sie, es sei von Kobolden „verhextes“ Silber und nannten es Kobolderz, Kobalt.

Es seien „viele, viele Versuche“ im Labor notwendig gewesen, sagt Kathrin Junge, bevor sie „mit Erfahrung, Knowhow und auch etwas Glück“ einen katalytisch aktiven Cobalt-Pincer-Katalysator gefunden hat. Damit liege nun ein leistungsfähiges Modell vor, dass bei recht milden Reaktionsbedingungen arbeitet, nämlich bei Temperaturen von 120 Grad Celsius und Drücken von maximal 50 bar. Das stellt gegenüber bisherigen Katalyse-Komplexen eine deutliche Verbesserung dar.

Industrie ist interessiert

Ein weiterer Vorteil des Cobalt-Pincer-Katalysators besteht darin, dass er selektiv arbeitet und die sogenannten funktionellen Gruppen im Molekül nicht angreift. Katalysereaktionen laufen ja mit meist sehr komplexen Verbindungen ab, in denen bestimmte Molekülgruppen für spezifische Eigenschaften sorgen und deshalb erhalten bleiben sollen. Und die dürfen während einer Katalysereaktion nicht beschädigt oder beeinträchtigt werden.

Als nächstes werden sich Kathrin Junge und ihre Arbeitsgruppe den Elementen Kupfer und Zink zuwenden, um das Modell durch weitere Elemente auszubauen. Es ist klassische Grundlagenforschung, die sie hier betreiben, und da sie dabei keinerlei Patente anmelden, kann jedermann sie nutzen.

In der Industrie verfolgen die Kollegen sehr genau die Veröffentlichungen aus dem Arbeitskreis von Prof. Matthias Beller bzw. der Gruppe um Kathrin Junge. Ihr hot paper war kaum erschienen, da die ist Forscherin schon daraufhin angesprochen worden. Auch dies zeige die Bedeutung dieser aktuellen Arbeit aus dem LIKAT.

Original-Paper
Chemistry – A European Journal. DOI: 10.1002/chem.201705201

Dr. Barbara Heller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.catalysis.de

Weitere Berichte zu: Katalysator Katalyse Kobalt Kobold LIKAT Leibniz-Institut Liganden Mangan Ruthenium Zange

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien schwärmen aus
17.01.2019 | Philipps-Universität Marburg

nachricht Forscher der TU Dresden finden neuen Ansatz für Therapien für neurodegenerative Erkrankungen
17.01.2019 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungsnachrichten

Chemiker der Saar-Uni entwickeln neues Material, das Seltene Erden bei LED-Lampen spart

18.01.2019 | Materialwissenschaften

Süßwasserfische der Mittelmeerregion in der Klimakrise

18.01.2019 | Ökologie Umwelt- Naturschutz

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics