Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Kobold in der Zange

17.01.2018

Chemikerinnen in Rostock entwickelten einen neuen Katalysator auf Basis von Kobalt, bei dem das aktive Metallzentrum von einer Molekülstruktur zangenartig umklammert und damit fixiert wird. Dieser sogenannte „Cobalt Pincer Complex“ (Pincer, engl. = Zange) ermöglicht die Hydrierung von Estern zu Alkoholen, die einen typischen Syntheseschritt in der Chemie und Pharmazie darstellt. Der Cobalt-Pincer-Complex dient gleichsam als Modell für die künftige Entwicklung von Katalysatoren, die auf solchen Strukturen aufgebaut sind. Gleichzeitig wird mit Kobalt ein Nicht-Edelmetall verwendet, was in Hinblick auf mögliche chemische Anwendungen hilft, Kosten zu senken und Ressourcen zu sparen.

Das renommierte Fachmagazin „Chemistry - A European Journal“ stufte diese Arbeit zu den Cobalt-Pincer-Complexen aus dem Rostocker Leibniz-Institut für Katalyse, LIKAT, als sog. "hot paper" ein und lud Themenleiterin Dr. Kathrin Junge ein, ein Cover dazu zu gestalten.


Verschiedene Katalysatoren zu Testung im Labor

LIKAT nordlicht

Prinzipiell versteht man unter einem Katalysator, eine bestimmte chemische Verbindung, die durch ihre bloße Anwesenheit eine chemische Reaktion zu beschleunigen vermag. So ein Katalysator besteht aus einem reaktiven Metall-Zentrum, das durch eine Art Gerüst, dem Liganden, wie Chemiker es nennen, umgeben und damit fixiert ist. Die Funktion solcher Liganden lässt sich durch eine vorteilhafte räumliche Struktur unterstützen, und eine solche Struktur ist ein Pincer-Ligand, bei dem zwei Molekülarme des Liganden das reaktive Zentrum in die Mitte nehmen.

Chemisch wohldefiniert

In der anorganischen Chemie werden Pincer-Komplexe seit den siebziger Jahren untersucht. „Sie stellen eine chemisch wohldefinierte Umgebung dar“, erläutert Kathrin Junge den Vorteil gegenüber anderen Strukturen.

Das heißt u.a., mit der Struktur sind gleichzeitig die chemischen Eigenschaften für die Reaktion definiert. Mit ihrem Team am LIKAT verwendet Kathrin Junge dieses Wissen nun für die organische Chemie, die sich mit der Umwandlung von Kohlenstoffverbindungen befasst.

Im konkreten Fall beschleunigt der Cobalt-Pincer-Komplex die Reduktion von Carbonsäureestern, die durch Anlagerung von Wasserstoff zu Alkohol umgewandelt werden. Diese Hydrierung ist ein wichtiger Schritt bei der Herstellung von Medikamenten bzw. pharmakologischen Wirkstoffen und auch bei der Synthese großtonnagiger Grundchemikalien.

Metall-Pincer-Komplexe werden schon seit ca. 5 Jahren im gesamten Arbeitskreis von Prof. Matthias Beller bearbeitet, der auch Direktor des LIAKTs ist und zu dem die Gruppe von Kathrin Junge gehört. Dabei wurden erste Erfahrungen mit Pincer-Strukturen zunächst anhand von Katalysatoren auf Ruthenium-Basis gesammelt.

Doch Ruthenium ist ein teures Edelmetall mit einer begrenzten Verfügbarkeit, weshalb der Trend in der Chemie aus Kosten- und Umweltgründen hin zur Verwendung von Nicht-Edelmetallen geht. Erste Versuche, Ruthenium durch Eisen zu ersetzen, liefen erfolgversprechend.

Kathrin Junge: „Die Frage war, ob sich auch andere Nicht-Edelmetalle in dieser molekularen Umgebung für leistungsfähige Katalysatoren nutzen lassen.“ Ihr Team wollte damit systematisch ein gängiges Modell neuartiger Katalysatoren schaffen, in denen sich eine Vielzahl von Nicht-Edelmetallen für unterschiedlichste Anwendungsfälle eignet.

Mittelalter: „verhextes“ Silber

Nach den ersten Erfolgen mit Eisen als reaktivem Zentrum nahmen sich Kathrin Junge und ihre Mitarbeiter die chemischen Elemente Mangan und Kobalt vor. Dabei ließen sich die Ergebnisse mit Kobalt weitaus weniger gut reproduzieren als mit Mangan. Kobalt habe seinem Namen alle Ehre gemacht, sagt Dr. Junge mit einem Schmunzeln.

Tatsächlich hatte es seinen Namen ursprünglich seiner „schwierigen“ Handhabung wegen bekommen. Im Mittelalter hielten Bergleute Kobalterz für Silbererz. Doch da es sich nicht wie gewohnt verarbeiten ließ, dachten sie, es sei von Kobolden „verhextes“ Silber und nannten es Kobolderz, Kobalt.

Es seien „viele, viele Versuche“ im Labor notwendig gewesen, sagt Kathrin Junge, bevor sie „mit Erfahrung, Knowhow und auch etwas Glück“ einen katalytisch aktiven Cobalt-Pincer-Katalysator gefunden hat. Damit liege nun ein leistungsfähiges Modell vor, dass bei recht milden Reaktionsbedingungen arbeitet, nämlich bei Temperaturen von 120 Grad Celsius und Drücken von maximal 50 bar. Das stellt gegenüber bisherigen Katalyse-Komplexen eine deutliche Verbesserung dar.

Industrie ist interessiert

Ein weiterer Vorteil des Cobalt-Pincer-Katalysators besteht darin, dass er selektiv arbeitet und die sogenannten funktionellen Gruppen im Molekül nicht angreift. Katalysereaktionen laufen ja mit meist sehr komplexen Verbindungen ab, in denen bestimmte Molekülgruppen für spezifische Eigenschaften sorgen und deshalb erhalten bleiben sollen. Und die dürfen während einer Katalysereaktion nicht beschädigt oder beeinträchtigt werden.

Als nächstes werden sich Kathrin Junge und ihre Arbeitsgruppe den Elementen Kupfer und Zink zuwenden, um das Modell durch weitere Elemente auszubauen. Es ist klassische Grundlagenforschung, die sie hier betreiben, und da sie dabei keinerlei Patente anmelden, kann jedermann sie nutzen.

In der Industrie verfolgen die Kollegen sehr genau die Veröffentlichungen aus dem Arbeitskreis von Prof. Matthias Beller bzw. der Gruppe um Kathrin Junge. Ihr hot paper war kaum erschienen, da die ist Forscherin schon daraufhin angesprochen worden. Auch dies zeige die Bedeutung dieser aktuellen Arbeit aus dem LIKAT.

Original-Paper
Chemistry – A European Journal. DOI: 10.1002/chem.201705201

Dr. Barbara Heller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.catalysis.de

Weitere Berichte zu: Katalysator Katalyse Kobalt Kobold LIKAT Leibniz-Institut Liganden Mangan Ruthenium Zange

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Katalysatoren - Fluktuationen machen den Weg frei
15.02.2019 | Ludwig-Maximilians-Universität München

nachricht Leipziger Forscher entwickeln neue Methode zur Entschlüsselung chemischer Reaktionen
15.02.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

FfE-Energietage 2019 - Die Energiewelt heute und morgen vom 1. bis 4. April 2019 in München

15.02.2019 | Veranstaltungen

Deutscher Fachkongress für kommunales Energiemanagement: Fokus Energie – Architektur – BauKultur

13.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Katalysatoren - Fluktuationen machen den Weg frei

15.02.2019 | Biowissenschaften Chemie

Berührungsgeschützt, kompakt, einfach: Rittal erweitert Board-Technologie

15.02.2019 | Energie und Elektrotechnik

Wie kann digitales Lernen gelingen? Lern-Prototypen werden auf der didacta vorgestellt

15.02.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics