Der Grammatik biologischer Zellen auf der Spur

Mit hoher Genauigkeit lassen sich Moleküle mit dem MOSAIC-Verfahren auf einer Stecktafel von etwa 50 mal 100 Nanometer Größe positionieren. Bild: KIT

„Rezeptoren auf Zellmembranen reagieren auf eine Vielzahl von Signalmolekülen. Diese bilden das Vokabular der Kommunikation“, erklärt Christof Niemeyer vom Institut für Biologische Grenzflächen des KIT. In der Regel werden mehrere, räumlich verteilte Rezeptoren gleichzeitig angesprochen, so wie auch in der menschlichen Sprache mehrere Worte pro Satz genutzt werden. Die genaue Bedeutung des einzelnen Wortes erschließt sich erst im Zusammenspiel aller Satzbausteine. „Mit unserer neuen MOSAIC-Methode können wir nun gezielt nicht nur Vokabeln, sondern ganze Sätze der Zellsprache entschlüsseln.“

Um eine einzelne Zelle mit einem definierten Satz anzusprechen, haben Niemeyer und sein Team zunächst die gewünschten Signalmoleküle mit einer Genauigkeit von 5 Nanometern auf einer Art Stecktafel fixiert, die etwa 100 Nanometer lang ist. Anschließend wurden Dutzende dieser Stecktafeln auf dem Zellträger aufgebracht. Damit ist es nun erstmals möglich, auf einer größeren Fläche viele Moleküle mit Nanometergenauigkeit zu positionieren. „Entscheidend war, dass wir sowohl die Selbstorganisation von Molekülen als auch eine mikroskopische Drucktechnik in der MOSAIC-Methode vereinen konnten“, so Niemeyer.

Die Stecktafeln setzen die Wissenschaftler aus langen DNA-Molekülen nach einem genauen Bauplan zusammen. Das DNA-Molekül faltet sich dann selbstorganisiert zu einer 100 Nanometer langen und 50 Nanometer breiten Platte, welche an den definierten Plätzen die gewünschten Signalmoleküle aufnehmen kann. Auf dem Zellträger werden ebenfalls aus DNA-Stücken die passenden Fundamente für die Stecktafeln gedruckt.

Diese spezifischen Fundamente sind wenige Mikrometer im Durchmesser und lassen sich auf einer Fläche bis zu einem Quadratzentimeter aufdrucken. Durch die Wahl der passenden DNA-Sequenzen haften die Stecktafeln in der richtigen Orientierung auf dem richtigen Fundament. Um die Funktionsweise der MOSAIC-Methode (Multiscale Origami Structures as Interfaces for Cells) zu beweisen, haben die Forscher in der ersten Studie gezeigt, dass die Modellzelllinie MCF7 auf unterschiedlich dicht besetzte Stecktafeln unterschiedlich reagiert.

„Viele Krankheiten wie Krebs oder Autoimmun-Erkrankungen lassen sich auf die Fehlfunktion von Rezeptoren und Signalen in Zellen zurückführen. Komplexe Signalwege zu verstehen, legt also die Grundlagen für kommende Therapieansätze und Medikamentenentwicklungen“, betont Niemeyer.

Multiscale Origami Structures as Interface for Cells (pages 15813–15817), Alessandro Angelin, Simone Weigel, Ruben Garrecht, Dr. Rebecca Meyer, Jens Bauer, Ravi Kapoor Kumar, Dr. Michael Hirtz and Prof. Dr. Christof M. Niemeyer, DOI: 10.1002/anie.201509772, onlinelibrary.wiley.com/doi/10.1002/anie.201509772/abstract

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer