Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Bluthochdruckschalter in der Nebenniere

20.02.2018

Ein internationales Team von Wissenschaftlerinnen und Wissenschaftlern hat die Mechanismen einer Form des Bluthochdrucks aufgeklärt. Jülicher Forscher konnten dabei erstmals zeigen, wie ein bestimmtes Protein den Unterschied zwischen den Chloridkonzentrationen innerhalb und außerhalb der Zelle benutzt, um den Blutdruck zu regulieren. „Biologische Informationsverarbeitung findet nicht nur in Nervenzellen und im Gehirn, sondern in jeder Zelle unseres Körpers statt“, erklärt Prof. Christoph Fahlke von Jülicher Institute of Complex Systems. „Es gibt eine Vielfalt von Mechanismen, mit denen Zellen externe Signale aufnehmen und verarbeiten können.“

Mehr als eine Milliarde Menschen weltweit leiden an Bluthochdruck, in Industrieländern wie Deutschland sind etwa 30 Prozent aller Erwachsenen davon betroffen. Längerer Bluthochdruck schädigt die Gefäße, was zu Durchblutungsstörungen führen kann: Mögliche Folgen sind Herzinfarkt, Nierenversagen, Schlaganfall. Die Ursachen für Bluthochdruck sind vielfältig. Neben bekannten Risikofaktoren wie Übergewicht, Salz- und Alkoholkonsum spielen auch genetische Ursachen eine Rolle. Schon eine Mutation eines einzelnen Gens kann zur familären Hypertonie führen, einer erblichen Veranlagung für Bluthochdruck, die schon bei Kindern und Jugendlichen auftreten kann.


Neben den bereits bekannten Mechanismen konnten Jülicher Forscher nun auch eine Aktivierung der Nebenniere über den Chloridkanal ClC-2 beschreiben. Der Ausstrom von Chlorid-Ionen führt hierbei zu einem elektrischen Signal, welches wiederum einen vermehrten Einstrom von Calcium-Ionen in die Zelle hervorruft. Dies ist das Signal für die Produktion des Hormons Aldosteron, welches den Wasser- und Salz-Haushalt reguliert. Krankhafte Veränderungen des ClC-2 Proteins verstärken diesen Mechanismus, so dass es zu einer vermehrten Aldosteron-Produktion und damit zu einem Bluthochdruck kommt.

Copyright: Forschungszentrum Jülich

Etwa ein Prozent aller Arten von Bluthochdruck wird durch eine Überproduktion des Hormons Aldosteron verursacht. Dieses wird in der Nebennierenrinde gebildet und reguliert unseren Salz- und Flüssigkeitshaushalt. Die Ursache der Überproduktion von Aldosteron sind oft Funktionsveränderungen von einzelnen Proteinen, die in der Signalverarbeitung von Zellen eine Rolle spielen.

Durch die Aufklärung des Genoms verschiedener Testpersonen und ihrer Familien konnte ein Team um Ute Scholl von der Charité in Berlin und Richard Lifton vom Laboratory of Human Genetics und Genomics der Rockefeller University in New York eine Ursache der Aldosteron-Überproduktion identifizieren: Mutationen in CIC-2, einem Ionenkanal-Protein, welches Chlorid-Ionen das Durchqueren von Zellmembranen ermöglicht.

Wie diese Mutationen die Funktion von CIC-2-Kanälen und der Nebennierenrinde von Patienten beeinträchtigen, hat die Arbeitsgruppe von Christoph Fahlke aufgeklärt. Die Wissenschaftler konnten zeigen, dass in den Aldosteron-produzierenden Zellen eine sehr hohe Konzentration von Chlorid-Ionen existiert. Dies führt dazu, dass die Aktivierung von ClC-2 die Zellen erregt und zur Synthese von Aldosteron antreibt. Die genetischen Veränderungen in den CIC-2-Kanälen von bestimmten Patienten führen dazu, dass diese elektrische Zellanregung auch schon bei geringeren Reizen stattfindet: Es kommt zur Aldosteron-Überproduktion.

Mit diesen neuen Erkenntnissen konnte so zum ersten Mal die Bedeutung von CIC-2-Proteins für die Signalverarbeitung innerhalb von Zellen verstanden werden. Neben der Aufklärung der Rolle von ClC-2 für den Krankheitsmechanismus und die Funktion der Nebenniere gibt die neue Veröffentlichung auch noch weitere Impulse für die Forschung der nächsten Jahre. "Abgesehen von einigen Ausnahmen ist die Bedeutung von Anionen wie Chlorid in der Verarbeitung von Informationen innerhalb der Zelle bislang eher stiefmütterlich behandelt worden", so Christoph Fahlke. "Mit der Vielzahl verfügbarer Techniken und erfahrener Wissenschaftler sind wir in einer hervorragenden Lage, diese Wissenslücke in der Zukunft weiter zu schließen."

Originalpublikation: CLCN2 chloride channel mutations in familial hyperaldosteronism type II,
Ute I. Scholl, Gabriel Stölting, Julia Schewe, Anne Thiel, Hua Tan, Carol Nelson-Williams, Alfred A. Vichot, Sheng Chih Jin, Erin Loring, Verena Untiet, Taekyeong Yoo, Jungmin Choi, Shengxin Xu, Aihua Wu, Marieluise Kirchner, Philipp Mertins, Lars C. Rump, Ali Mirza Onder, Cory Gamble, Daniel McKenney, Robert W. Lash, Deborah P. Jones, Gary Chune, Priscila Gagliardi, Murim Choi, Richard Gordon, Michael Stowasser, Christoph Fahlke and Richard P. Lifton,
Nature Genetics, DOI: 10.1038/s41588-018-0048-5


Weitere Informationen:

Institute of Complex Systems, Zelluläre Biophysik (ICS-4)
Forschungszentrum Jülich


Ansprechpartner:

Prof. Christoph Fahlke
Institute of Complex Systems, Zelluläre Biophysik (ICS-4)
Forschungszentrum Jülich
Tel.: 02461 61-3016
E-Mail: c.fahlke@fz-juelich.de

Pressekontakt:

Annette Stettien
Unternehmenskommunikation, Forschungszentrum Jülich
Tel. +49 2461 61-2388
E-Mail: a.stettien@fz-juelich.de

Dr. Regine Panknin
Unternehmenskommunikation, Forschungszentrum Jülich
Tel. +49 2461 61-9054
E-Mail: r.panknin@fz-juelich.de

 

Das Forschungszentrum Jülich leistet wirksame Beiträge zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Information, Energie und Bioökonomie. Es konzentriert sich auf die Zukunft der Informationstechnologien und -verarbeitung, komplexe Vorgänge im menschlichen Gehirn, den Wandel des Energiesystems und eine nachhaltige Bioökonomie. Das Forschungszentrum entwickelt die Simulations- und Datenwissenschaften als Schlüsselmethode der Forschung weiter und nutzt große, oft einzigartige wissenschaftliche Infrastrukturen. Dabei arbeitet es themen- und disziplinenübergreifend und nutzt Synergien zwischen den Forschungsgebieten.

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics