Den Kosmos „Zelle“ erforschen

v.l.: Prof. Dr. Silvio O. Rizzoli, Natalia Revelo, Dr. Dirk Kamin, Sven Truckenbrodt AG Rizzoli

Die hochauflösende Mikroskopie hat in den letzten beiden Jahrzehnten an Bedeutung gewonnen. Dabei hinken die Entwicklung neuer Markierungstechniken und Sonden und deren biologische Anwendung meist den technischen Fertigkeiten hinterher.

Prof. Dr. Silvio O. Rizzoli vom Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG) hat zusammen mit seinem Team ein neues Verfahren zur Markierung von Membranen in Zellen entdeckt.

Es erweitert die Anwendbarkeit hochauflösender Mikroskopie für biologische Präparate und Frage- stellungen. Das Verfahren hilft zu verstehen, wie sich Zellen erneuern, ihre molekularen Bestandteile verteilen und innerhalb der Zelle transportieren. Die neue Methode wurde im Mai 2014 im Journal of Cell Biology veröffentlicht.

Originalpublikation: Revelo NH, Kamin D, Truckenbrodt S, Wong AB, Reuter K, Reisinger E, Moser T, Rizzoli SO (2014) A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J CELL BIOL, 205(4): 591-606.

Alle Zellen müssen ihre Membranen stetig erneuern, um beispielsweise Nährstoffe aufzunehmen, Sekrete abzugeben und Membranproteine auszutauschen. Mehrere Strukturen der Zelle, wie die Plasmamembran, das Endoplasmatische Retikulum, der Golgi Apparat, Endosomen und Vesikel, sind an jedem dieser Prozesse beteiligt. Diese zellulären Strukturen werden auch als „Organellen“ bezeichnet.

Bisher war es kaum möglich, diese Organellen auf ihre Proteine hin zu untersuchen. Das Problem hierbei ist: Sowohl die Membranen, die sich erneuern, als auch die spezifischen Pro- teine desselben Organells müssen gleichzeitig markiert werden. Bislang wurde dafür die Membran des sich erneuernden Organells mit einem Fluorophor markiert und zur selben Zeit die Antikörper der spezifischen Proteine gefärbt. Für die Färbung müssen die Zellen fixiert werden. Allerdings gilt: Fast alle Farbstoffe, die in lebenden Zellen bestmöglich funktionieren, sind nur schlecht fixierbar und gehen während der Antikör- perbehandlung verloren.

Das Forscherteam um Natalia Revelo, Erstautorin der Publikation, hat nun eine Membran-Sonde entwickelt, die dieses Problem umgeht. Die mCLING-(membrane-binding fluorophore-Cysteine-Lysine-Palmitoyl Group) Sonde besteht aus einem kurzen Poly- peptid, das an einen Membrananker und einem Fluorophor gekoppelt ist. Die Studie belegt, dass mCLING eingesetzt werden kann, um die Plasmamembran zu markieren.

Gleichzeitig erlaubt das Verfahren, bestimmte Organellen anhand ihrer spezifischen Proteine zu unterscheiden. Dies gelingt auch, wenn die Organellen dicht beieinander liegen, und kann sogar mit fixierten Zellen und Geweben durchgeführt werden. Mit Hilfe der mCLING Sonde in verschiedenen wichtigen biologischen Modellsystemen konnten die Autoren bereits lange bestehende Fragen im Bereich des Membranrecyclings lösen. Darüber hinaus könnte das mCLING-Verfahren zur Analyse weiterer Prozesse eingesetzt werden, wie zum Beispiel für Untersuchungen zur Struktur und molekularen Organisation isolierter Zellorganellen in vitro oder zur Verteilung von Proteinen auf den Membranen verschiedener Zelltypen.

Prof. Dr. Silvio O. Rizzoli leitet das Institut für Neuro- und Sinnesphysiologie an der Universitätsmedizin Göttingen und ist Mitglied des Göttinger Exzellenzclusters und DFG-Forschungszentrums für Mikroskopie im Nanometerbereich und Molekularphy- siologie des Gehirns (CNMPB). Seine Forschungsschwerpunkte sind die molekularen Prozesse der Signalübertragung zwischen Nervenzellen. Prof. Rizzoli benutzt hoch- auflösende Lichtmikroskopie, um Transport und Funktion von intrazellulären „Bläs- chen“, so genannten Vesikeln, in den Synapsen der Nervenzellen zu verstehen. Für seine Forschungsvorhaben wurde Prof. Rizzoli bereits zum zweiten Mal mit einem hochdotierten Förderpreis der Europäischen Union ausgezeichnet.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität Institut für Neuro- und Sinnesphysiologie
European Neuroscience Institute (ENI) Göttingen Grisebachstraße 5, 37077 Göttingen
Prof. Dr. Silvio Rizzoli, Telefon 0551 / 39-33630 srizzol@gwdg.de

CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Humboldtallee 23, 37073 Göttingen
Dr. Heike Conrad, Telefon 0551 / 39-7065
heike.conrad@med.uni-goettingen.de www.cnmpb.de

http://rizoli-lab.de – Arbeitsgruppe Prof. Dr. Silvio O. Rizzoli
http://www.cnmpb.de – Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns

Media Contact

Dr. Heike Conrad idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer