Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Ribosom als Kontrolleur

29.09.2016

Die Synthese von makromolekularen Maschinen im Zellinneren ist ein komplizierter und diffiziler Prozess. Biochemiker aus Würzburg und Göttingen haben jetzt neue Details dieser Vorgänge entschlüsselt. Sie zeigen, dass die Zelle viel dafür tut, Produktionsfehler zu vermeiden.

Der Zusammenbau von Proteinen zu größeren makromolekularen Gebilden im Zellinneren ist an Ribosomen – und damit an ihren Entstehungsort durch den Prozess der sogenannten Translation – gekoppelt. Das ist das Ergebnis neuester Untersuchungen von Wissenschaftlern der Universität Würzburg und vom Max-Planck-Institut (MPI) für biophysikalische Chemie in Göttingen. Das Ribosom übernimmt dabei quasi die Funktion eines „Qualitäts-Checkpoints“: Es stellt sicher, dass neu gebildete Proteine direkt in die Produktionsstraße von makromolekularen Komplexen geschleust werden. Die Ergebnisse ihrer Arbeit haben die Forscher in den Fachzeitschriften Cell Reports und The EMBO Journal veröffentlicht.


Anders als gedacht, entlässt das Ribosom Proteine nach der Synthese nicht in das Zytosol (l). Stattdessen hält es sie so lange fest, bis passenden Gegenstücke und Helfer angeliefert werden (r.).

Grafik: Ashwin Chari

Ein molekulares Legospiel

„Man muss sich das wie ein molekulares Legospiel vorstellen: Ein Baustein wird an den anderen gefügt, so lange bis das Produkt fertig ist. Kommt an einer Stelle ein fehlerhafter Stein zum Einsatz, kann am Ende das ganze Gebilde nicht funktionieren.“

Professor Utz Fischer ist Inhaber des Lehrstuhls für Biochemie an der Universität Würzburg. Schon seit vielen Jahren forscht er daran, wie sogenannte „makromolekulare Maschinen“ in Zellen zusammengebaut werden.

Sein Spezialgebiet sind die Spleißosomen – große Komplexe aus Proteinen und RNA-Molekülen, die im Inneren des Zellkerns die Übertragung des genetischen Codes in Proteine kontrollieren. Sie entfernen dabei aus der Boten-RNA diejenigen Abschnitte, die keine Protein-kodierenden Informationen enthalten, und fügen die informationstragenden Abschnitte wieder zusammen.

In ihrer jüngsten Arbeit hat Fischers Team in Zusammenarbeit mit Göttinger Kollegen den Produktionsweg von sogenannten UsnRNPs, den Untereinheiten, aus denen sich die Spleißosomen zusammensetzen, komplett entschlüsselt – von der Synthese der Einzelkomponenten über deren Zusammenbau bis zur Kombination der funktionstüchtigen Maschine. Dabei haben sie einen Akteur identifiziert, dessen Rolle so bisher noch nicht bekannt war: das Ribosom.

Die Rolle der Ribosomen

Ribosomen sind der Ort, an dem im Inneren der Zelle genetische Information in Proteine umgesetzt wird – in der Fachsprache „Translation“ genannt. Wie sich diese Proteine anschließend zu makromolekularen Maschinen zusammenfinden, war bislang nicht bis ins letzte Detail aufgeklärt. Klar war allerdings: Die Vorstellung, dass das Ribosom die Bausteine in die Zelle entlässt, wo sie so lange herumwandern, bis sie ihr passendes Gegenstück finden, konnte definitiv nicht zutreffen. „Dafür herrscht im Zellinneren ein viel zu großes Gedränge“, sagt Ashwin Chari, Projektgruppenleiter am MPI für biophysikalische Chemie. Die Proteine würden viel zu lange benötigen, um sich zu Komplexen zusammenzuschließen, da sie an „falschen“ Bestandteilen hängen bleiben und so Verklumpungen bilden, die im schlimmsten Fall gravierende Funktionsstörungen verursachen. Molecular Crowding heißt diese drangvolle Enge unter Wissenschaftlern.

„Es muss also in der lebenden Zelle einen Mechanismus geben, der die neu synthetisierten Proteine am Ribosom schützt und mit dem Wunschpartner verbindet“, sagt Elham Paknia, die experimentell das Projekt leitete. Dass dem tatsächlich so ist, konnten die Wissenschaftler jetzt erstmals nachweisen. Demnach entlässt das Ribosom die Proteine nach der Synthese nicht in das Zytosol. Stattdessen hält es sie dort so lange fest, bis bestimmte Helfer – sogenannte Chaperone – die passenden Gegenstücke anliefern. Damit stelle das Ribosom sicher, dass nur die eine, gewünschte Struktur ausgebildet werden kann; es übernimmt sozusagen neben der Produktion auch noch die Rolle eines Qualitätskontrolleurs.

Hoher Aufwand für Regulation und Kontrolle

„Extrem hohe Sicherheitsstandards“ sind nach den Erkenntnissen der Forscher sowieso ein grundlegendes Prinzip der Arbeitsweise von Zellen. So sind, wie sie zeigen konnten, an dem Zusammenbau makromolekularer Maschinen häufig mehr Helfer als Bausteine beteiligt. Das spiegelt sich auch im Energieverbrauch der Zelle wider: „Die eigentliche Katalyse verbraucht längst nicht so viel Ressourcen wie Regulation und Kontrolle. In diese Aufgaben fließt wesentlich mehr Energie hinein“, sagt Utz Fischer.

Der hohe Aufwand ist gerechtfertigt: Fehler beispielsweise beim Zusammenbau der Spleißosomen sind ein Auslöser der Spinalen Muskelatrophie. Die Krankheit ist gekennzeichnet durch ein Absterben der motorischen Nervenzellen vor allem im Rückenmark, was bei den Betroffenen zu Muskelschwund und Lähmungen führt. Fehlgefaltete Proteine gelten außerdem als Verursacher zahlreicher anderer Krankheiten – von Diabetes bis zu Alzheimer.

Ein generelles Prinzip

Auch wenn Fischer und seine Göttinger Kollegen die Rolle des Ribosoms beim Zusammenbau von Makromolekülen jetzt am Beispiel des Spleißosoms entschlüsselt haben, sind die Forscher davon überzeugt, dass es sich nicht um einen Einzelfall handelt. „Es gibt gute Gründe dafür zu glauben, dass es sich dabei um ein generelles Prinzip handelt“, sagt Fischer. Schließlich müssen auch andere Makromoleküle in der gleichen drangvollen Enge, aber mit höchsten Sicherheitsstandards synthetisiert werden.


The Ribosome Cooperates with the Assembly Chaperone pICln to Initiate Formation of snRNPs. Elham Paknia, Ashwin Chari, Holger Stark, Utz Fischer. Cell Reports, Volume 16, Issue 12, 20 September 2016. http://dx.doi.org/10.1016/j.celrep.2016.08.047

Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization. Nils Neuenkirchen, Clemens Englbrecht, Jürgen Ohmer, Thomas Ziegenhals, Ashwin Chari & Utz Fischer, The EMBO Journal. DOI 10.15252/embj.201490350

Kontakt

Prof. Dr. Utz Fischer, T: (0931) 31-84029, E-Mail: utz.fischer@biozentrum.uni-wuerzburg.de

Dr. Ashwin Chari, T: (0551) 201-1654, E-Mail: ashwin.chari@mpibpc.mpg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen
19.02.2020 | Max-Planck-Institut für Ornithologie

nachricht Einblicke in den Ursprung des Lebens: Wie sich die ersten Protozellen teilten
19.02.2020 | Universität Augsburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer

19.02.2020 | Informationstechnologie

Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen

19.02.2020 | Biowissenschaften Chemie

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics