Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das kleine Kräftemessen

05.11.2015

Mithilfe von Talin können Zellen mechanische Reize wahrnehmen

Ob wir uns in ein Daunenbett kuscheln oder eine harte Pritsche bevorzugen, ist meist eine Frage der persönlichen Vorliebe. Bei Zellen aber werden das Wachstum, die Entwicklung oder die Bewegung auf vorhersagbare Weise von der Steifheit ihrer Umgebung beeinflusst.


Das zelluläre Protein Talin (rot), hält bei der Anheftung von Zellen an Oberflächen mechanische Kräfte von etwa sieben bis zehn Piko-Newton aus. Dabei steht es in direkter Verbindung mit dem dem Zellskelett (grau). Mit Hilfe dieser Bindung bestimmen Zellen die Steifigkeit ihrer unmittelbaren Umgebung. Dies verstärkt die Haftung der Zelle auf harten Oberflächen (links). Kann die mechanische Talin-Bindung nicht gebildet werden (rechts), können die Zellen nicht mehr erkennen, wie steif ihre Umgebung ist.

© MPI für Biochemie/Carsten Grashoff

Wie allerdings mechanische Informationen von Zellen erkannt und weiterverarbeitet werden, ist weitestgehend unklar. Wie in Nature Cell Biology berichtet, hat ein Team um Carsten Grashoff vom Max-Planck-Institut für Biochemie in Martinsried bei München eine Methode entwickelt, mit der sich genau untersuchen lässt, wie Zellen die mechanischen Eigenschaften von Geweben erkennen.

Zellen spüren die mechanischen Eigenschaften ihrer unmittelbaren Umgebung, etwa Nachbarzellen, die sie umgebende extrazelluläre Matrix und physikalischen Stress. Dabei übersetzen sie mechanische Kräfte in biochemische Signale, die sich wiederum auf das Verhalten der Zellen selbst – von der Differenzierung bis zum hin programmierten Zelltod – auswirken. Allerdings liegen die mechanischen Kräfte, die entlang einzelner Moleküle wirken, im Bereich von nur wenigen Piko-Newton. Kräfte in dieser Größenordnung, konnten mit konventionellen Methoden nicht untersucht werden.

Grashoff und seine Kollegen haben nun fluoreszierende Sonden entwickelt, die bei Krafteinwirkungen von wenigen Piko-Newton ihre Farbe ändern. Werden diese genetisch in ein Protein inseriert, können die molekular wirkenden Kräfte mikroskopisch in lebenden Zellen bestimmt werden. Die Forscher konnten mit Hilfe dieser Methode nun zeigen, dass einer der Hauptakteure, das zelluläre Protein Talin-1, bei der Anheftung von Zellen an Oberflächen mechanische Kräfte von etwa sieben bis zehn Piko-Newton aushält. „Überraschend war für uns, wie kritisch diese Bindung für das mechanische Empfinden der Zellen ist, denn Zellen ohne funktionierendes Talin sind mechanisch so gut wie taub und können sich nicht mehr auf ihre mechanische Umgebung einstellen", sagt Grashoff.

Da fast alle Zellen unseres Körpers eine oder mehrere Formen von Talin produzieren, ist es wahrscheinlich, dass der neu gezeigte Mechanismus für die Entwicklung und Funktion der meisten Organe wichtig ist. Die neue Methode wird daher vermutlich breite Anwendung finden auch weil sich die Sonde, wie schon ein älterer Prototyp aus dem Labor Grashoff, zur Untersuchung einer Vielzahl von unterschiedlichen Proteinen anwenden lässt. Warum sich manche Menschen weicher und andere härter betten, bleibt allerdings weiterhin offen.


Ansprechpartner

Dr. Christiane Menzfeld
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824

Fax: +49 89 8578-3777

E-Mail: menzfeld@biochem.mpg.de


Dr. Carsten Grashoff
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2416

E-Mail: cgrasho@biochem.mpg.de


Originalpublikation
K. Austen, P. Ringer, A. Mehlich, A. Chrostek-Grashoff, C. Kluger, C. Klingner, B. Sabass, R. Zent, M. Rief, C. Grashoff

Extracellular rigidity sensing by talin isoform-specific mechanical linkages

Nature Cell Biology, November 2015 DOI: 10.1038/ncb3268

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie, Martinsried

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»
19.11.2019 | Universität Bern

nachricht Tiefseebakterien ernähren sich wie ihre Nachbarn
19.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics