Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das große Strömen zum Licht

09.02.2016

Die winzigen Cyanobakterien nehmen Helligkeit wahr, indem sie das Prinzip der Linse im menschlichen Auge nutzen

Seit 300 Jahren – also seit es Mikroskope gibt – fragen sich Wissenschaftlerinnen und Wissenschaftler, wie Bakterien Licht wahrnehmen und darauf reagieren können.


Das Licht trifft auf die runden Zellen des Bakteriums, wo es wie durch eine mikroskopisch kleine Linse gebrochen wird. Dadurch entsteht ein Brennpunkt auf der gegenüberliegenden Seite der Zelle. Quelle: Nils Schürgers

Ein internationales Team um die Freiburger Biologin Prof. Dr. Annegret Wilde hat das Rätsel nun gelöst: Die Forscherinnen und Forscher zeigen an den so genannten Cyanobakterien, dass diese nur wenige Mikrometer winzigen Organismen gezielt auf eine Lichtquelle zuströmen, indem sie das Prinzip einer Linse im menschlichen Auge nutzen. Die Studie ist nun in der Zeitschrift „eLife“ erschienen.

Cyanobakterien bevölkerten die Erde schon vor mehr als 2,5 Milliarden Jahren und kommen überall dort vor, wo es Licht gibt: im Eis, in Wüsten, Flüssen und Seen, aber auch an Hauswänden und in Aquarien. Sie betreiben Fotosynthese und gewinnen mithilfe von Licht ihre Energie.

In den Ozeanen, die etwa 70 Prozent der Erdoberfläche bedecken, gehören sauerstoffproduzierende Cyanobakterien zu den wichtigsten fotosynthetisch aktiven Organismen und bilden somit einen Grundpfeiler der Biosphäre.

Das Team um Wilde hat erkannt, dass Cyanobakterien, die sich direkt und präzise auf eine Lichtquelle zubewegen können, die Lichtrichtung aufgrund ihrer mikrooptischen Eigenschaften erkennen können. Das Licht trifft auf die Oberfläche der runden Einzeller, wo es wie durch eine mikroskopisch kleine Linse gebrochen wird.

Dadurch entsteht ein Brennpunkt auf der gegenüberliegenden Seite der Zelle. Von diesem fokussierten Punkt mit hoher Lichtintensität bewegen sich die Zellen nun fort, was dazu führt, dass sie letztendlich zur natürlichen Lichtquelle wandern.

Bisher sind Erklärungsversuche zur Fototaxis der Bakterien, also dem Strömen zum Licht, an der Theorie gescheitert, dass diese Organismen, die nur wenige Längen einer Lichtwelle messen, eigentlich zu klein sind, um Lichtunterschiede zwischen der Vorder- und der Rückseite der Zelle wahrzunehmen. Dadurch, dass das ganze Bakterium als Linse wirkt, kann Licht gebündelt werden, und es entsteht ein ausgeprägter Lichtgradient in der Zelle.

„Dieses physikalische Prinzip unterscheidet sich eigentlich kaum von dem der Lichtbrechung in den Linsen unserer Augen“, erläutert Wilde. „Die Konzentration von Licht durch mikroskopisch kleine Organismen, die nicht unbedingt die Form einer runden Linse haben müssen, sondern zum Beispiel auch wie eine Faseroptik Licht bündeln könnten, wollen wir nun in weiteren gemeinsamen Projekten untersuchen.“

Ein besseres Verständnis der mikrooptischen Eigenschaften könnte Aufschluss darüber geben, inwieweit die Struktur und Form von Zellen und Biofilmen die Lichtsammlung beeinflussen. Dieses Wissen könnte in Zukunft für die Konstruktion maßgeschneiderter Fotobioreaktoren oder zur Verbesserung neuartiger Solarzellen genutzt werden.

Annegret Wilde ist seit 2012 Professorin für Molekulare Genetik an der Albert-Ludwigs-Universität. An der Studie waren Wissenschaftler des Instituts für Biologie III sowie des Freiburg Institute for Advanced Studies (FRIAS) der Universität beteiligt.

Das Team arbeitete zudem mit Forscherinnen und Forschern aus Karlsruhe und London/England zusammen. Bei der Studie spielte Prof. Dr. Conrad Mullineaux aus London eine entscheidende Rolle, der als Fellow am FRIAS forschte.

Originalveröffentlichung:
N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, A. Wilde (2016): Cyanobacteria use micro-optics to sense light direction. In: eLife. DOI: 10.7554/eLife.12620

Kontakt:
Prof. Dr. Annegret Wilde
Institut für Biologie III
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-97828
E-Mail: annegret.wilde@biologie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-09.17

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics