Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das große Aufräumen nach dem Stress

25.05.2018

Wenn Zellen unter Stress geraten, aktivieren sie bestimmte Reaktionsmuster. Würzburger Wissenschaftler haben neue Details dieser Reaktion identifiziert. Diese können helfen, neurodegenerative Krankheiten besser zu verstehen.

Giftstoffe, eine Unterversorgung mit Nährstoffen, eine Infektion mit Viren, Hitze: Auslöser, die Zellen in Stress versetzen, gibt es viele. In solchen Fällen starten die betroffenen Zellen ein Programm, mit dem sie sich vor stressbedingten Schäden zu schützen versuchen. In der Regel fahren sie die Neubildung zelleigener Proteine herunter und sparen auf diese Weise Ressourcen ein, die sie später brauchen können, um Zellschäden zu reparieren, oder um unter den Stressbedingungen eine Zeit lang zu überleben.


Farbige Mikroskopie-Aufnahmen, die Zellen mit normalen (grüne Punkte) und abnormalen (gelbe Punkte) Stressgranula zeigen.

Foto: AG Buchberger

Sichtbare Kennzeichen einer solchen Stressreaktion sind sogenannte Stressgranula: Diese kleinen, aus zahlreichen Proteinen und Boten-RNAs bestehenden Körnchen bilden sich im Zellinnern, wenn die Proteinproduktion gestoppt wird. Ist der Stress vorbei, und die Zelle nimmt ihre reguläre Arbeit wieder auf, baut die Zelle diese Stressgranula wieder ab. Funktioniert dieser Abbauprozess allerdings nicht nach Plan, kann dies fatale Folgen haben.

Wie jüngste Studien zeigen, stehen Stressgranula gleich bei zwei unheilbaren neurodegenerativen Erkrankungen zumindest als Mitverursacher unter Verdacht: Bei der Amyotrophen Lateralsklerose (ALS), die zu Muskelschwund und im Endstadium zu einer tödlichen Lähmung führt, und bei der Frontotemporalen Demenz (FTD), der zweithäufigsten Demenzform bei unter 65-jährigen.

Publikation in Molecular Cell

Neue Details um die Auflösung von Stressgranula haben jetzt Wissenschaftler vom Biozentrum der Julius-Maximilians-Universität Würzburg (JMU) entschlüsselt. Leiter der Studie war der Biochemiker Professor Alexander Buchberger; Erstautor ist Ankit Turakhiya, Mitglied des Graduiertenkollegs GRK2243 „Ubiquitylierung verstehen: Von molekularen Mechanismen zu Krankheiten“. Mit daran beteiligt waren unter anderen Professor Andreas Schlosser vom Rudolf-Virchow-Zentrum der JMU und Professor Kay Hofmann (Universität zu Köln). Die Ergebnisse ihrer Arbeit stellen die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift Molecular Cell vor.

„Wir konnten zeigen, dass das Protein ZFAND1 notwendig für die normale Auflösung der Stressgranula ist. Fehlt ZFAND1, können einige Granula nicht mehr aufgelöst werden und verändern stattdessen ihre Struktur. Diese abnormen Stressgranula müssen dann aufwändig durch die zelluläre Müllabfuhr, die Autophagie, entsorgt werden“, fasst Alexander Buchberger das zentrale Ergebnis der neuen Studie zusammen. ZFAND1 wirkt allerdings nicht direkt auf den Abbauprozess ein. Stattdessen rekrutiert es einen speziellen Enzymkomplex, der für den Abbau fehlerhafter Proteine benötigt wird, das sogenannte Proteasom, und bringt ihn mit den Stressgranula in Kontakt.

Eine unerwartete Entdeckung

Dass das Proteasom eine unverzichtbare Rolle bei der Auflösung der Stressgranula spielt, war so nicht erwartet worden, erklärt Buchberger. Bisher sei die Wissenschaft davon ausgegangen, dass fehlerhafte Proteine an Stressgranula zusammen mit diesen im Rahmen der Autophagie entsorgt würden. Diese Annahme konnten die Biochemiker mit ihrer Studie jetzt korrigieren.

Was sich für den Laien nach reiner Grundlagenforschung mit wenig Bezug zur Praxis anhört, ist tatsächlich für die medizinische Forschung von hoher Bedeutung. „Die Anhäufung abnormer Stressgranula wird als eine mögliche Entstehungsursache für neurodegenerative Erkrankungen angesehen“, erklärt Buchberger. Dementsprechend sei die Aufklärung der Wirkmechanismen bei der Bildung und Auflösung von Stressgranula wichtig, um die Grundlagen dieser Krankheiten besser zu verstehen und mögliche Angriffspunkte für eine Therapie zu finden.

In einem nächsten Schritt wollen Buchberger und sein Team deshalb die Zusammensetzung von Stressgranula genauer analysieren und die schadhaften Proteine identifizieren, die durch das Proteasom entfernt werden müssen. Ihr übergeordnetes Ziel ist es, die Regulationsprozesse rund um die Bildung und Auflösung von Stressgranula detaillierter aufzuklären.

“ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules"; Ankit Turakhiya, Susanne R. Meyer, Gabriella Marincola, Stefanie Böhm, Jens T. Vanselow, Andreas Schlosser, Kay Hofmann, and Alexander Buchberger, doi: 10.1016/j.molcel.2018.04.021

Kontakt

Prof. Dr. Alexander Buchberger, Lehrstuhl für Biochemie, T: +49 931 31-88031, alexander.buchberger@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics