Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das große Aufräumen nach dem Stress

25.05.2018

Wenn Zellen unter Stress geraten, aktivieren sie bestimmte Reaktionsmuster. Würzburger Wissenschaftler haben neue Details dieser Reaktion identifiziert. Diese können helfen, neurodegenerative Krankheiten besser zu verstehen.

Giftstoffe, eine Unterversorgung mit Nährstoffen, eine Infektion mit Viren, Hitze: Auslöser, die Zellen in Stress versetzen, gibt es viele. In solchen Fällen starten die betroffenen Zellen ein Programm, mit dem sie sich vor stressbedingten Schäden zu schützen versuchen. In der Regel fahren sie die Neubildung zelleigener Proteine herunter und sparen auf diese Weise Ressourcen ein, die sie später brauchen können, um Zellschäden zu reparieren, oder um unter den Stressbedingungen eine Zeit lang zu überleben.


Farbige Mikroskopie-Aufnahmen, die Zellen mit normalen (grüne Punkte) und abnormalen (gelbe Punkte) Stressgranula zeigen.

Foto: AG Buchberger

Sichtbare Kennzeichen einer solchen Stressreaktion sind sogenannte Stressgranula: Diese kleinen, aus zahlreichen Proteinen und Boten-RNAs bestehenden Körnchen bilden sich im Zellinnern, wenn die Proteinproduktion gestoppt wird. Ist der Stress vorbei, und die Zelle nimmt ihre reguläre Arbeit wieder auf, baut die Zelle diese Stressgranula wieder ab. Funktioniert dieser Abbauprozess allerdings nicht nach Plan, kann dies fatale Folgen haben.

Wie jüngste Studien zeigen, stehen Stressgranula gleich bei zwei unheilbaren neurodegenerativen Erkrankungen zumindest als Mitverursacher unter Verdacht: Bei der Amyotrophen Lateralsklerose (ALS), die zu Muskelschwund und im Endstadium zu einer tödlichen Lähmung führt, und bei der Frontotemporalen Demenz (FTD), der zweithäufigsten Demenzform bei unter 65-jährigen.

Publikation in Molecular Cell

Neue Details um die Auflösung von Stressgranula haben jetzt Wissenschaftler vom Biozentrum der Julius-Maximilians-Universität Würzburg (JMU) entschlüsselt. Leiter der Studie war der Biochemiker Professor Alexander Buchberger; Erstautor ist Ankit Turakhiya, Mitglied des Graduiertenkollegs GRK2243 „Ubiquitylierung verstehen: Von molekularen Mechanismen zu Krankheiten“. Mit daran beteiligt waren unter anderen Professor Andreas Schlosser vom Rudolf-Virchow-Zentrum der JMU und Professor Kay Hofmann (Universität zu Köln). Die Ergebnisse ihrer Arbeit stellen die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift Molecular Cell vor.

„Wir konnten zeigen, dass das Protein ZFAND1 notwendig für die normale Auflösung der Stressgranula ist. Fehlt ZFAND1, können einige Granula nicht mehr aufgelöst werden und verändern stattdessen ihre Struktur. Diese abnormen Stressgranula müssen dann aufwändig durch die zelluläre Müllabfuhr, die Autophagie, entsorgt werden“, fasst Alexander Buchberger das zentrale Ergebnis der neuen Studie zusammen. ZFAND1 wirkt allerdings nicht direkt auf den Abbauprozess ein. Stattdessen rekrutiert es einen speziellen Enzymkomplex, der für den Abbau fehlerhafter Proteine benötigt wird, das sogenannte Proteasom, und bringt ihn mit den Stressgranula in Kontakt.

Eine unerwartete Entdeckung

Dass das Proteasom eine unverzichtbare Rolle bei der Auflösung der Stressgranula spielt, war so nicht erwartet worden, erklärt Buchberger. Bisher sei die Wissenschaft davon ausgegangen, dass fehlerhafte Proteine an Stressgranula zusammen mit diesen im Rahmen der Autophagie entsorgt würden. Diese Annahme konnten die Biochemiker mit ihrer Studie jetzt korrigieren.

Was sich für den Laien nach reiner Grundlagenforschung mit wenig Bezug zur Praxis anhört, ist tatsächlich für die medizinische Forschung von hoher Bedeutung. „Die Anhäufung abnormer Stressgranula wird als eine mögliche Entstehungsursache für neurodegenerative Erkrankungen angesehen“, erklärt Buchberger. Dementsprechend sei die Aufklärung der Wirkmechanismen bei der Bildung und Auflösung von Stressgranula wichtig, um die Grundlagen dieser Krankheiten besser zu verstehen und mögliche Angriffspunkte für eine Therapie zu finden.

In einem nächsten Schritt wollen Buchberger und sein Team deshalb die Zusammensetzung von Stressgranula genauer analysieren und die schadhaften Proteine identifizieren, die durch das Proteasom entfernt werden müssen. Ihr übergeordnetes Ziel ist es, die Regulationsprozesse rund um die Bildung und Auflösung von Stressgranula detaillierter aufzuklären.

“ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules"; Ankit Turakhiya, Susanne R. Meyer, Gabriella Marincola, Stefanie Böhm, Jens T. Vanselow, Andreas Schlosser, Kay Hofmann, and Alexander Buchberger, doi: 10.1016/j.molcel.2018.04.021

Kontakt

Prof. Dr. Alexander Buchberger, Lehrstuhl für Biochemie, T: +49 931 31-88031, alexander.buchberger@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht RNA-Modifikation - Umbau unter Druck
06.12.2019 | Ludwig-Maximilians-Universität München

nachricht Verstopfung in Abwehrzellen löst Entzündung aus
06.12.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: Freiformflächen bis zu 80 Prozent schneller schlichten: Neue Werkzeuge und Algorithmen für die Fräsbearbeitung

Beim Schlichtfräsen komplexer Freiformflächen können Kreissegment- oder Tonnenfräswerkzeuge jetzt ihre Vorteile gegenüber herkömmlichen Werkzeugen mit Kugelkopf besser ausspielen: Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelte im Forschungsprojekt »FlexiMILL« gemeinsam mit vier Industriepartnern passende flexible Bearbeitungsstrategien und implementierte diese in eine CAM-Software. Auf diese Weise lassen sich große frei geformte Oberflächen nun bis zu 80 Prozent schneller bearbeiten.

Ziel im Projekt »FlexiMILL« war es, für die Bearbeitung mit Tonnenfräswerkzeugen nicht nur neue, verbesserte Werkzeuggeometrien zu entwickeln, sondern auch...

Im Focus: Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Über die Ergebnisse berichtet das Team in der Zeitschrift Nature Communications. (DOI 10.1038/s41467-019-13240-z)

Ein Durchbruch der Elektromobilität wird bislang unter anderem durch ungenügende Reichweiten der Fahrzeuge behindert. Helfen könnten Lithium-Ionen-Akkus mit...

Im Focus: Neue Klimadaten dank kompaktem Alexandritlaser

Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter. Bereiche oberhalb von 40 km sind allerdings nur mit Höhenforschungsraketen direkt zugänglich. Ein LIDAR-System (Light Detection and Ranging) mit einem diodengepumpten Alexandritlaser schafft jetzt neue Möglichkeiten. Wissenschaftler des Leibniz-Instituts für Atmosphärenphysik (IAP) und des Fraunhofer-Instituts für Lasertechnik ILT entwickeln ein System, das leicht zu transportieren ist und autark arbeitet. Damit kann in Zukunft ein LIDAR-Netzwerk kontinuierlich und weiträumig Daten aus der Atmosphäre liefern.

Der Klimawandel ist in diesen Tagen ein heißes Thema. Eine wichtige wissenschaftliche Grundlage zum Verständnis der Phänomene sind valide Modelle zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

RNA-Modifikation - Umbau unter Druck

06.12.2019 | Biowissenschaften Chemie

Der Versteppung vorbeugen

06.12.2019 | Geowissenschaften

Verstopfung in Abwehrzellen löst Entzündung aus

06.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics