Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Geheimnis der Pflanzen lüften

02.03.2018

Pflanzen können Sonnenlicht mit hoher Effizienz in chemische Energie umwandeln. Wie sie das schaffen, ist bis heute nicht geklärt. ETH-Physiker haben nun ein quantenphysikalisches Modell gebaut, das diese Frage beantworten soll.

Chlorophyll ist das entscheidende Molekül. Dank dem grünen Farbstoff gelingt es den Pflanzen, Sonnenlicht direkt in chemische Energie umzuwandeln. Wie in den pflanzlichen Zellen mit Hilfe von Licht das Molekül ATP erzeugt wird, der zentrale Baustein der Energieversorgung in den Pflanzen, steht heute in jedem besseren Biologielehrbuch. Und dennoch ist dieser Vorgang für die Wissenschaft nach wie vor ein Rätsel. Vor allem die hohe Effizienz, mit der die Pflanzen das Sonnenlicht umwandeln, lässt die Forscher staunen.


Schaltung zur Simulation der Lichtumwandlung: 3 Qubits (rot, blau und grün) sammeln Mikrowellenstrahlung aus dem violetten Hohlleiter. Dank dem Rauschsignal, das über die rosa Zuflusslinien eingebr

ETH Zurich, Quantum Device Lab, A. Potočnik

Gegensätzliche Welten

Verschiedene Experimente der letzten Jahre deuten darauf hin, dass quantenphysikalische Effekte bei der Energieumwandlung eine wichtige Rolle spielen. Dank dieser Effekte kann die Energie, welche die Chlorophyll-Moleküle einfangen, ohne grosse Verluste dorthin transferiert werden, wo ATP gebildet wird.

«Wir haben eine paradoxe Situation», erklärt Anton Potočnik, Postdoc in der Gruppe von Andreas Wallraff am Quantum Device Lab des Departements Physik. «Auf der einen Seite prägen quantenphysikalische Effekte das Geschehen, auf der andern Seite läuft die Photosynthese in einem wässrigen und warmen Umfeld ab, in dem die Regeln der klassischen Physik gelten.»

Gerade in diesem scheinbaren Widerspruch könnte jedoch der Schlüssel verborgen liegen: Mehrere theoretische Modelle stützen die Vermutung, dass just das Zusammenspiel dieser zwei Welten die hohe Effizienz der Photosynthese erklärt. Ob das tatsächlich so ist, liess sich bisher experimentell jedoch nicht überprüfen.

Ein Modell aus drei Qubits

Genau diese Lücke hat Potočnik nun zusammen mit Arno Bargerbos und seinen Forscherkollegen geschlossen. Wie er in der aktuellen Ausgabe der Zeitschrift Nature Communications berichtet, hat er zusammen mit Wissenschaftlern der University of Cambridge und der Princeton University eine Versuchsanordnung entwickelt, mit der sich die verschiedenen theoretischen Modelle experimentell verifizieren lassen.

Es handelt sich dabei um ein einfaches, vollständig kontrolliertes Quantensystem, das im Modellmassstab eine grundlegende Struktur abbildet, wie sie in pflanzlichen Zellen vorkommt. Dessen Kernstück sind drei supraleitende Quantenbits (Qubits), die unterschiedlich stark miteinander gekoppelt sind. Sie repräsentieren Chlorophyll-Moleküle, welche die Lichtenergie aufnehmen und an den ATP-bildenden Enyzmkomplex weitergeben.

«Unsere Versuchsanordnung liefert präzise Einblicke, wie Licht in chemische Energie umgewandelt wird, da wir die verschiedenen Parameter gezielt beeinflussen können», erklärt Potočnik. «Dieses Verständnis ist wichtig, denn es könnte dazu beitragen, dass Licht künftig in Photovoltaikzellen effizienter in Strom umgewandelt wird als bisher.»

Auf die Schwingung kommt es an

Potočniks Experimente bestätigen die Vermutung, dass die natürlichen Schwingungen der Chlorophyll-Moleküle eine zentrale Rolle beim Energietransfer spielen. Je nach dem, wie schnell sich die Moleküle bewegen, wird die Energie mehr oder weniger effizient transportiert.

Mit den drei gekoppelten Qubits haben die Wissenschaftler eine Anordnung entwickelt, welche die realen Bedingungen in den Pflanzenzellen allerdings nur rudimentär abbildet. «Nachdem wir nun grundsätzlich demonstrieren konnten, dass unser System die Vorgänge realistisch abbildet, planen wir in einem nächsten Schritt, komplexere Systeme mit mehr Qubits zu bauen, um das Geheimnis der Photosynthese endlich zu lüften», erklärt Potočnik.

Quantenphysik im Alltag

Der experimentelle Ansatz der Forscher könnte auch in anderen Bereichen neue Einsichten vermitteln. So vermuten Wissenschaftler beispielsweise, dass auch unser Geruchssinn auf einer Kombination von Quantenphysik und klassischer Physik basiert. Denn mit klassischer Physik alleine lässt sich nicht erklären, warum wir derart viele Gerüche unterscheiden können. «Ob das so ist, liesse sich mit einem Modell wie dem unseren nun experimentell verifizieren», so Potočnik.
Literaturhinweis

Potocnik A, Bargerbos A, Schröder F, Khan SA, Collodo MC, Gasparinetti S, Salathé Y, Creatore C, Eichler C, Türeci HE, Chin AW, Wallraff A: Studying Light-Harvesting Models with Superconducting Circuits. Nature Communications (2018). doi: 10.1038/s41467-018-03312-x

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2018/03/geheimnis-...

Peter Rüegg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics