Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Floß auf der Zellmembran

21.04.2015

Einem lange umstrittenen Rätsel der Zellmembran kam man an der TU Wien auf die Spur: Die molekularen Flöße, sogenannte „Lipid Rafts“, die angeblich über die Membran der Zelle wandern, gibt es nicht.

Wie ein Floß, das durch das Wasser gleitet, sollen sich winzige Gebilde aus Fettmolekülen und Proteinen angeblich ihren Weg durch unsere Zellmembranen bahnen. Diese „Raft-Hypothese“ galt seit Jahren als weitgehend akzeptiert. Untersuchungen an der TU Wien zeigen nun allerdings: In lebenden Zellen gibt es die lange gesuchten „Lipidflöße“ gar nicht. Dieses Ergebnis wurde nun im Fachjournal „Nature Communications“ publiziert.


Eva Sevcsik im Biolabor der TU Wien

TU Wien

Die Zellmembran ist im Fluss

„Die Zellmembran, die äußere Hülle der Zelle, darf man sich nicht wie eine statische, feste Oberfläche vorstellen“, sagt Eva Sevcsik von der Biophysik-Gruppe am Institut für Angewandte Physik der TU Wien. „Die Membran ist sehr fluide, ihre Moleküle, also Lipide und Proteine, bewegen sich ständig.“

Die Proteine können bestimmte Funktionen haben: sie dienen etwa als Andockstationen für Stoffe von außen, oder als Kanäle, die Moleküle ins Innere der Zelle leiten. Weil verschiedene Proteine einander oft beeinflussen, lag die Vermutung nahe, dass sie sich auch gemeinsam durch die Membran bewegen – wie ein Nano-Floß, das über die Oberfläche der Zelle gleitet.

Diese Hypothese gewann unter Zellbiologen zunehmend an Popularität, und die „Rafts“ werden mittlerweile mit einer Vielzahl an zellulären Prozessen in Verbindung gebracht. Das Problem dabei: Indizien für diese Hypothese gibt es nur aus Studien an Modellsystemen oder toten Zellen. Direkt beobachten ließen sich diese Flöße in einer lebenden Zelle bisher nie.

Als Grund dafür wurde angenommen, dass die Flöße zu klein und kurzlebig sind, sodass sie mit konventionellen Mikroskopietechniken nicht detektiert werden können. In den Biophysik-Labors der TU Wien ging man diesem Rätsel nun mit einer Kombination an modernsten Techniken auf den Grund: „Einerseits verwenden wir hochsensitive Mikroskopietechniken, mit denen wir einzelne Moleküle beobachten. Andererseits können wir mithilfe von mikro- und nanostrukturierten Oberflächen die Zellmembran von außen beeinflussen“, erklärt Eva Sevcsik. „Daher waren wir in der Lage, die Organisation der Zellmembran mit einer komplett neuen Herangehensweise zu erforschen“.

Molekulares Lego

Dabei werden Oberflächen mit einer speziellen Mikrostruktur ausgestattet, auf der man menschliche Zellen züchten kann, die auf diese Struktur reagieren. „Das ist wie molekulares Lego“, sagt Eva Sevcsik. „Wir platzieren auf der mikrostrukturierten Oberfläche molekulare Bausteine, die genau zu bestimmten Proteinen in der Zellmembran passen.“ Diese Proteine verteilen sich daher nicht mehr über die gesamte Membran, sie reichern sich genau entlang der vorgegebenen Oberflächenstrukturen an.

Man kann sich also ein Protein aussuchen, das als wichtiger Bestandteil der gesuchten Nano-Flöße gilt, es an ganz bestimmen Orten festhalten, und beobachten, wie andere Proteine und Lipide darauf reagieren.

Sichtbar gemacht werden diese mit speziellen Mikroskopie-Techniken: Man platziert in ganz geringen Mengen fluoreszierende Marker an Proteine oder Lipide, und filmt die einzelnen Moleküle dabei, wie sie sich in der Membran bewegen. „Wenn wir die Bewegung einzelner Proteine untersuchen, können wir bestimmen, ob wir es mit Lipidflößen zu tun haben oder nicht“, sagt Eva Sevcsik.

„So ein auf unseren Strukturen verankertes Floß würde wandernden Proteinen nämlich mehr Widerstand entgegensetzen als die Umgebung – die Wanderung wäre dort langsamer. In unseren Messungen ist diese Diffusionsbewegung aber überall gleich.“

Schlechte Karten für die Raft-Hypothese

Dass sich die Raft-Hypothese so lange halten konnte, obwohl es keine stichhaltigen Beweise für sie gab, ist für Eva Sevcsik gar nicht besonders überraschend: „Es ist verlockend, seine Ergebnisse im Kontext einer anerkannten Hypothese zu interpretieren – ein generelles Problem in der Wissenschaft“, meint sie. „Wir hatten uns zum Ziel gesetzt, die Raft-Hypothese ganz unvoreingenommen zu prüfen.“

Die Raft-Hypothese, wie man sie bisher kannte und lehrte, scheint ins Wanken zu kommen. Doch wenn es keine floßartig treibenden Nano-Strukturen in der Zellmembran gibt, gibt es dann andere Mechanismen, die für Ordnung zwischen den Proteinen und Lipiden sorgen? „Möglicherweise spielt das Aktin-Cytoskelett dabei eine wichtigere Rolle als man bisher dachte“, vermutet Sevcsik. Es liegt direkt unter der Zellmembran und verleiht der Zelle Stabilität. Seine Funktion will Sevcsik nun mit biophysikalischen Methoden genauer unter die Lupe nehmen.

Rückfragehinweis:
Dr. Eva Sevcsik
Institut für Angewandte Physik
Technische Universität Wien
Lehargasse 4, 1060 Wien
T: +43-1-58801-13486
eva.sevcsik@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics