Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Kugelrund ist das Modell des Chromatophors, für das die Wissenschaftler Rechner mit einer enormen Kapazität nutzten. Die Simulation verhält sich genauso wie ihr Gegenstück in der Natur. Quelle: Christopher Maffeo, University of Illinois

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of Illinois, der daran forschte, atomare Wechselwirkungen lebender Systeme zu verstehen und darzustellen. Seine Arbeitsgruppe modellierte das Chromatophor, so heißt ein Licht absorbierender Teil einer Zelle, das chemische Energie in Form eines Moleküls namens ATP ausschüttet. Diese Chromatophoren findet sich in pflanzlichen Zellen aber auch in manchen Bakterien.

„Sie wirken wie eine Solarzelle der Zelle. Mit ihren Antennenkomplexen nehmen sie das Licht auf und schütten Energie in Form von ATP für alle anderen Aktivitäten der Zelle wieder aus“, sagt Ulrich Kleinekathöfer. Der Professor für theoretische Physik an der Jacobs University hat gemeinsam mit seiner Doktorandin Ilaria Mallus an dem Projekt mitgewirkt. Auf Basis der Daten der amerikanischen Kollegen führten sie quantenmechanische Berechnungen für das Modell durch.

Um herauszufinden, wie dieses System funktioniert, sezierte die internationale Forschergruppe das Chromatophor mit jedem der Wissenschaft zur Verfügung stehenden Werkzeug, von Laborexperimenten über Rasterkraftmikroskopie bis hin zu Softwareinnovationen. Alle Teile wurden in dem 136 Millionen Atome umfassenden Modell, das sich wie sein Gegenstück in der Natur verhält, wieder zusammengesetzt. Möglich war das nur mithilfe von enorm leistungsfähigen Supercomputern. „Standardsimulationen arbeiten mit etwa 100.000 Atomen, dieses Modell ist um einen Faktor 1.000 größer, es ist ein Vorstoß in neue Dimensionen“ sagt Kleinekathöfer.

Bislang konnten Forscher normalerweise nur einzelne Proteine simulieren. Das Modell zeigt das Wechselspiel sehr vieler Proteine über die gesamte Prozesskette, von der Lichtabsorption bis zur Herstellung von ATP. „Irgendwann werden wir es schaffen ein ganzes Bakterium oder eine ganze Zelle zu simulieren“, glaubt Kleinekathöfer. „Dies ist ein wichtiger Schritt in Richtung auf dieses Ziel.“

Über die Jacobs University Bremen:

In einer internationalen Gemeinschaft studieren. Sich für verantwortungsvolle Aufgaben in einer digitalisierten und globalisierten Gesellschaft qualifizieren. Über Fächer- und Ländergrenzen hinweg lernen, forschen und lehren. Mit innovativen Lösungen und Weiterbildungsprogrammen Menschen und Märkte stärken. Für all das steht die Jacobs University Bremen. 2001 als private, englischsprachige Campus-Universität gegründet, erzielt sie immer wieder Spitzenergebnisse in nationalen und internationalen Hochschulrankings. Ihre mehr als 1.500 Studierenden stammen aus mehr als 120 Ländern, rund 80 Prozent sind für ihr Studium nach Deutschland gezogen. Forschungsprojekte der Jacobs University werden von der Deutschen Forschungsgemeinschaft oder aus dem Rahmenprogramm für Forschung und Innovation der Europäischen Union ebenso gefördert wie von global führenden Unternehmen.
Für weitere Informationen: www.jacobs-university.de
Facebook | Youtube | Twitter | Instagram | Weibo

Prof. Dr. Ulrich Kleinekathöfer
Professor of Theoretical Physics

Email: u.kleinekathoefer@jacobs-university.de

http://Cell, Volume 179, P1098-1111, 2019
http://Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism

Media Contact

Melisa Berktas idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer