Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computersimulation macht kurzlebige chemische Strukturen sichtbar

14.07.2016

Chemikern der Universität Basel ist es gelungen, mit Computersimulationen kurzlebige Strukturen in Eiweissmolekülen aufzuklären. In der Zeitschrift «Angewandte Chemie» berichten die Forscher, wie mit Computersimulationen atomare Details der Wirkungsweise von Proteinen verstanden werden können.

Mithilfe der computergestützten Chemie ist es möglich, die Bewegung einzelner Atome einer Verbindung zu charakterisieren. Modernste Simulationstechniken erlauben es heute, die Dynamik von Molekülen und Systemen mit hunderttausenden von Atomen quantitativ zu beschreiben.


Die Struktur des Proteins Myoglobin (silber) mit dem eingebetteten aktiven Zentrum (farbig). Das Sickstoffmolekül (rot/blau) ist in dieser Abbildung an das Eisenatom (grüne Kugel) gebunden.

Universität Basel, Departement Chemie

Diese Techniken sind vor allem bei denjenigen Zuständen wichtig, die wegen ihrer kurzen Lebensdauer experimentell nur schwer direkt beobachtbar sind. Hier liefern Computersimulationen wertvolle, weiterführende Einsichten.

Die Funktion eines Eiweissmoleküls (Proteins) wird durch dessen Struktur und Dynamik bestimmt. Dabei ist von besonderer Bedeutung, dass man die für die Wirkungsweise relevanten Strukturen und molekularen Vorgänge im sogenannten aktiven Zentrum kennt – also an der Stelle, an der chemische Reaktionen stattfinden.

Das Bilden und Brechen chemischer Bindungen ist ein dynamischer Prozess und hat Strukturänderungen zur Folge. Die beobachtbare Dynamik endet in der Regel in stabilen (energiearmen) Zuständen, welche durch einen oder mehrere metastabile (energiereichere) Zwischenschritte erreicht werden. Ob sich ein metastabiler Zustand direkt experimentell nachweisen lässt oder nicht, hängt von dessen Lebensdauer ab. Ist diese zu kurz, stehen nur indirekte Nachweismethoden zur Verfügung.

Computer berechnet atomare Geometrie

Ein Forscherteam um Prof. Markus Meuwly vom Departement Chemie der Universität Basel hat nun mit sogenannt reaktiven Molekulardynamik-Simulationen das räumliche und zeitliche Verhalten des Proteins Myoglobin charakterisiert. Myoglobin ist für den Sauerstofftransport innerhalb der Zellen wichtig und kommt hauptsächlich im Muskelgewebe vor. Stickstoffmonoxid, das in den Zellen gebildet wird, ist ein kurzlebiger und reaktiver Botenstoff, der unter anderem eine wichtige Rolle bei der Erweiterung der Blutgefässe unter Sauerstoffmangel spielt.

«Zwar ist der Bindungsprozess von Stickstoffmonoxid an Myoglobin bereits gut experimentell untersucht, was für das Eichen von Computersimulationen wichtig ist», erklärt Prof. Meuwly. «Auch die Existenz von metastabilen Zwischenstufen konnte experimentell nachgewiesen werden. Aber nur mithilfe unserer Simulationen lassen sich die Strukturen solcher Zwischenstufen, ihre Dynamik und damit die Funktion des Proteins weitergehend entschlüsseln.»

Somit bilden Computersimulationen zusammen mit experimentellen Beobachtungen die Grundlage für das Verständnis komplexer chemischer und biologischer Systeme. Solch kombinierte Ansätze sind denn auch Ausgangspunkt für die Behandlung weitergehender Fragen, beispielsweise zur Anpassung und Optimierung von Proteinen oder pharmazeutischen Wirkstoffen. Dies setzt ein Verständnis der zugrunde liegenden Prozesse auf molekularer und atomarer Ebene voraus.

Originalartikel

Maksym Soloviov, Akshaya K. Das, Markus Meuwly
Structural Interpretation of Metastable States in MbNO
Angew. Chem. Int. Ed. (2016), doi: 10.1002/ange.201604552

Weitere Auskünfte

Prof. Dr. Markus Meuwly, Universität Basel, Departement Chemie, Tel. +41 61 267 38 21, E-Mail: m.meuwly@unibas.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics