Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

CO2 - vom Abfallstoff zum Wertstoff

22.04.2013
Nachwuchswissenschaftler vom LIKAT Rostock erhalten 2 Mio. Euro, um die Nutzbarmachung des Klimakillers CO2 als Rohstoff zu erkunden.

In Kohlendioxid (CO2) steckt Kohlenstoff (C). Das ist das Element, was das Grundgerüst „organischer“ Moleküle bildet. Organische Moleküle wiederum sind die Grundbausteine vieler Gegenstände des Alltags, angefangen vom Treibstoff bis hin zu pharmazeutischen oder kosmetischen Produkten.


Polycarbonate im Kolben
LIKAT - nordlicht


Beispiel für einen Katalysator
LIKAT - nordlicht

Der überwiegende Teil dieser Verbindungen wird heutzutage aus fossilen Rohstoffquellen produziert und so für den alltäglichen Gebrauch bereitgestellt. Die Endlichkeit dieser Rohstoffe und die fast täglich steigenden Preise sind hinlänglich bekannt, und beispielsweise an den Zapfsäulen der Tankstellen ersichtlich. Die Erschließung alternativer Rohstoffquellen ist und bleibt somit ein hoch aktuelles Forschungsthema. Jährlich werden über 30 Milliarden Tonnen des Treibhausgases Kohlendioxid überwiegend durch die Verbrennung fossiler Rohstoffe als Abfallstoff ausgestoßen.

Bekannt als Klimakiller und eng mit der Klimaerwärmung in Zusammenhang gebracht, ist das CO2 gleichzeitig aber auch ein interessanter Rohstoff. CO2 ist ungiftig, kostengünstig und in großen Mengen verfügbar. Die Natur macht es uns vor. Sie nutzt seit Jahrmillionen Kohlendioxid als Kohlenstoff¬quelle. In der Photosynthese wird aus CO2 und Wasser mit Hilfe der Sonnenenergie Biomasse aufgebaut, der Ursprung unserer heutigen fossilen Rohstoffe Kohle, Öl und Erdgas.

CO2 ist ein äußerst stabiles Molekül und sehr reaktionsträge. Die Lösung zu einer effizienten und wirtschaftlichen Nutzung des Kohlendioxids liegt in der Entwicklung neuer Katalysatoren. Die Katalyse – ein Phänomen der Natur abgeschaut - ist die Wissenschaft von der Beschleunigung chemischer Reaktionen. Katalysatoren fügen zusammen, was sich ohne sie sehr langsam oder gar nicht verbinden würde. Im Idealfall tun sie dies ohne sich zu verbrauchen. Seit mehr als 60 Jahren wird am Leibniz-Institut für Katalyse in Rostock Katalyseforschung betrieben. Auch die Entwicklung neuer Katalysatoren für die stoffliche Nutzbarmachung von CO2 als Kohlenstoffbaustein wird in verschieden Projekten von Forschern des LIKAT’s bearbeitet.

Insbesondere die Nachwuchsgruppe um Dr. Thomas Werner am LIKAT beschäftigt sich mit diesem aktuellen Forschungsthema. Innerhalb der Fördermaßnahme „Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2“ des Bundesministeriums für Bildung und Forschung (BMBF) entwickelt die Arbeitsgruppe Werner in Zusammenarbeit mit den Industriepartnern Bayer und Evonik, neue Katalysatorsysteme für die Nutzung von CO2 als Baustein in Polymeren und organischen Carbonaten.

Während diese Polymere beispielsweise zu Schäumen für die Matratzenherstellung weiterverarbeitet werden können, finden organische Carbonate Anwendung in Lithiumionen-Batterien. Nach den kürzlich stattgefundenen positiven Evaluierungen der Projekte durch das BMBF, mit einem Gesamtfördervolumen von rund 2 Mio. Euro, können die Forschungsarbeiten für weitere zwei Jahre fortgeführt werden.

Dr. Barbara Heller | idw
Weitere Informationen:
http://www.catalysis.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics