Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Choreografie der Moleküle – Röntgenblitze „filmen“ molekulare Schalter

20.05.2010
Einem Forscherteam der Max-Planck-Institute für biophysikalische Chemie, für medizinische Forschung und für Kernphysik sowie des European XFEL, der Universität Göttingen und des Deutschen Elektronen-Synchrotrons (DESY) ist es erstmals gelungen, Freie-Elektronen-Laser-Strahlung für die Untersuchung chemischer Kristallstrukturen einzusetzen.

Die Aufnahmen erfolgten mit dem Freie-Elektronen-Laser FLASH am DESY. Wie die Experimente der Wissenschaftler zeigen, lassen sich strukturelle Momentaufnahmen der Moleküle ganz ohne Artefakte abbilden – trotz hoher Intensität des Röntgenlasers.


Die untersuchte Schalteinheit besitzt die Form von Nanoröhrchen, die durch fettsäureähnliche Komponenten aufgebaut ist. Bild: Techert / Max-Planck-Institut für biophysikalische Chemie

Die Lichtblitze des 260 Meter langen Freie-Elektronen-Lasers (FEL) am Deutschen Elektronensynchrotron sind nicht nur leistungsstark, sondern auch ultrakurz: Die kürzeste erreichte Wellenlänge ist gerade einmal sieben Nanometer (millionstel Millimeter). Ultrakurz ist auch die Dauer der Strahlungspulse, die zehn bis 50 Femtosekunden (billiardstel Sekunden) beträgt. Wie Wissenschaftler der Max-Planck-Institute für biophysikalische Chemie, für medizinische Forschung und für Kernphysik sowie des Deutschen Elektronen-Synchrotrons, der Universität Göttingen und des European XFELs zeigen, lassen sich damit ultraschnell Strukturen von Molekülen aufnehmen.

Gewöhnlich entschlüsseln Forscher die Strukturen von Molekülen, indem sie daraus Kristalle züchten und diese mit Röntgenlicht durchleuchten – eine mitunter langwierige und nicht immer erfolgsgekrönte Prozedur. Nicht alle Moleküle lassen sich kristallisieren – schon gar nicht in den benötigten Mengen. Auch die Zeitauflösung solcher Experimente ist sehr begrenzt. Langsame Transportphänomene in Festkörpern oder biologische Prozesse ließen sich bisher nur fragmentarisch aufnehmen.

Stop and go – die Struktur molekularer Schalter in Echtzeit “filmen”

Strukturen extrem schnell schaltbarer Nanokristalle mit ultraschnellen Freie-Elektronen-Laser-Pulsen aufzunehmen, gelang jetzt dem Wissenschaftlerteam um Simone Techert, Leiterin der Forschungsgruppe „Strukturdynamik (bio)chemischer Systeme“ am Max-Planck-Institut für biophysikalische Chemie.

Wissenschaftler erhoffen sich von molekularen Schaltern unter anderem ein wirksames Werkzeug, um chemische und biochemische Prozesse gezielt steuern und regulieren zu können. Neben ihrer Anwendung in der Optoelektronik könnten molekulare Schalter auch in der Molekularmedizin Einsatz finden. „Mittels Röntgenlaser könnte man beispielsweise einen „Live-Mitschnitt“ vom Wirkprozess eines medizinischen Wirkstoffs mit seinem molekularen Partner aufnehmen“, erklärt die Chemikerin Techert.

Doch die Stärke des Freie-Elektronen-Lasers ist zugleich seine Schwäche. Denn die hoch ionisierende Röntgenstrahlung kann zu Strahlenschäden führen; Messartefakte wären die Folge. Dass sich gefürchtete Artefakte vermeiden lassen, zeigen die Ergebnisse der Forscher eindrucksvoll. „Mit einer Pulslänge von 20 Femtosekunden sind die Aufnahmen „im Kasten“, bevor der Zerstörungsprozess der Moleküle durch die weichen Röntgenstrahlen einsetzt“, erklärt Techert. Die Arbeiten wurden durch die Advanced Study Group der Max-Planck-Gesellschaft sowie den SFB 602 („Complex structures in condensed matter from atomic to mesoscopic scales“) und den SFB 755 („Nanoscale photonic imaging“) der Deutschen Forschungsgemeinschaft unterstützt.

Durch die hohe Intensität der FEL-Strahlung ließen sich selbst kleinste Mengen eines Molekülkristalls untersuchen. Mit Freie-Elektronen-Lasern könnten so Strukturinformationen auch aus Nano-Teilchen beziehungsweise Nano-Kristallen gewonnen werden, die sich momentan herkömmlichen Strukturbestimmungsmethoden mit Röntgenstrahlung verweigern. „Mit härterer Röntgenstrahlung der Wellenlänge von weniger als einem Nanometer könnte es zukünftig möglich sein, chemische Strukturen in kristallografischer Manier im Angstrom-Bereich zu bestimmen. Bis zu welcher strukturellen Auflösung dies möglich sein wird, bleibt mit Spannung zu erwarten“, so Max-Planck-Forscherin Techert. Die Ergebnisse der Forscher lassen hoffen, dass Freie-Elektronen-Laser künftig Einsatz finden könnten, um kleine Strukturänderungen molekularer Wirkstoffe oder Proteine „live“ in Aktion zu filmen.

Originalveröffentlichungen:
[1] I. Rajkovic, W. Quevedo, G. Busse, J. Hallmann, R. Moré, M. Petri, F. Krasniqi, A. Rudenko, Th. Tschentscher, A. Foehlisch, A. Pietsch, M. Beye, N. Stojanovic, S. Düsterer, R. Treusch, M. Tolkiehn, S. Techert: Diffraction Properties of Periodic Lattices under Free Electron Laser Radiation. Phys. Rev. Lett. 104, 125503-125506 (2010).

[2] I. Rajkovic, J. Hallmann, S. Grübel, R. More, W. Quevedo, M. Petri, S. Techert: Development of a Multipurpose Vacuum Chamber for Serial Optical and Diffraction Experiments with Free Electron Laser Radiation. Rev. Sci. Instr. 81, 045105-1-6 (2010).

Kontakt:
Dr. Simone Techert, Forschungsgruppe Strukturdynamik (bio)chemischer Systeme
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1268
Fax: +49 551 201-1501
E-Mail: stecher@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
Fax: +49 551 201-1151
Email: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.gwdg.de
http://www.mpibpc.mpg.de/research/ags/techert/index.html
http://www.mpibpc.mpg.de/groups/pr/PR/2010/10_15/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bienen brauchen es bunt
20.08.2018 | Julius-Maximilians-Universität Würzburg

nachricht Künstliche Enzyme aus DNA
20.08.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Eröffnung des neuen Produktionsgebäudes bei Heraeus Medical in Wehrheim

20.08.2018 | Unternehmensmeldung

Universum Studie: Internationalität und Praxisbezug sind Erfolgsfaktoren der ISM

20.08.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics