Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chirale Kristalle und die Asymmetrie des Lebens

10.02.2016

Kristalle von Biomineralien etwa in Knochen oder Zähnen kommen oftmals entweder nur in einer links- oder rechtshändigen Form vor, die sich zueinander verhalten wie ein Objekt und sein Spiegelbild. Wie diese «Chiralität» auf diese sonst achiralen Kristalle übertragen wird, ist bisher kaum verstanden. Nun hat ein internationales Forscherteam unter der Leitung von Empa-Wissenschaftlern erstmals aufgezeigt, wie chirale Biomoleküle auf molekularer Ebene ihre Händigkeit auf die Kristalloberflächen übertragen, wie sie in «Nature Chemistry» berichten.

Fehlende Spiegelsymmetrie – das heisst Strukturen erscheinen entweder nur in einer links- oder rechtshändigen Form – ist eine bemerkenswerte Eigenschaft der biologischen Welt. Diese so genannte Homochiralität zeigt sich auf molekularer, zellulärer und sogar auf makroskopischer Ebene.


Achiraler rhombohedrischer Islandspat

Empa

Schnecken sind ein klassisches Beispiel, bei denen fast alle Individuen einer Art ein in derselben Richtung drehendes spiralförmiges Haus besitzen. Andere bekannte Beispiele findet man in der Wuchsrichtung verschiedener Kletterpflanzen oder bei der Position der Organe im menschlichen Körper.

Weniger bekannt ist die Tatsache, dass einzelne Kristalle von Biomineralien wie Calcit oder Calciumoxalat eine Händigkeit besitzen – und zwar nur, weil sie in einem biologischen Milieu heranwuchsen, wo Biomoleküle (Zuckermoleküle, Proteine) ihre eigene Chiralität auf die ansonsten achiralen Mineralkristalle übertragen. Es gibt viele Beispiele von chiralen Formen in biologisch geformten Mineralien, aber wie die Chiralität von den Biomolekülen auf die Kristalloberflächen übergehen, wird bisher kaum verstanden.

Nun hat ein internationales Forscherteam aus der Schweiz, China, Ungarn, dem Vereinigten Königreich, Italien und den USA unter der Leitung von Empa-Wissenschaftlern eine Studie im Fachblatt «Nature Chemistry» publiziert, die sehr ausführlich erklärt, wie ein chirales Molekül eine Kristalloberfläche umstuktutiert. In anderen Worten: wie die Händigkeit auf eine ansonsten achirale Struktur übertragen wird und was der zugrundeliegende Mechanismus auf atomarer Ebene ist.

Für ihre Untersuchungen platzierte das Forscherteam chirale Moleküle auf eine Kupferoberfläche und zeigte mit Hilfe von Rastertunnelmikroskopie (RTM) bei submolekularer Auflösung, kombiniert mit Synchrotron-Röntgenphotoelektronenspektroskopie (XPS), wie die achirale Kupferoberfläche aufgrund der Wechselwirkung mit den absorbierten Molekülen umstrukturiert wurde – ein Vorgang, der bislang noch nie «beobachtet» werden konnte.

Den Weg für neue Medikamente ebnen

Karl-Heinz Ernst, «Distinguished Senior Researcher» bei der Empa und Professor für Chemie an der Universität Zürich, einer der Autoren der Arbeit, erklärt: «Die Bildung von asymmetrischen Formen während des Wachstums von ansonsten symmetrischen kristallförmigen Strukturen verbessert unser Verständnis von Asymmetrie in der Biologie. Kristalle von Biomineralien wie die von Knochen, Zähnen, Schalen oder Stacheln von Seeigeln werden mit bemerkenswerter Kontrolle geformt», fügt er hinzu. «Aber bisher haben wir kaum verstanden, wie genau die Biomoleküle das Kristallwachstum an der Kristalloberfläche beeinflussen.»

Durch die Verwendung eines Modellsystems konnten die Forscher nun aufzeigen, wie ein einziges (chirales) organisches Molekül – ein Hemibuckminsterfulleren oder «Buckybowl», das heisst ein halbes Fussballmolekül oder C60-Molekül – vorgibt, wo die Atome des Minerals in ihrer Nähe auf der Oberfläche platziert werden und dadurch ihre links- oder rechtshändige Beschaffenheit, also ihre Chiralität, auf die Kristallstruktur, in diesem Fall die Kupferoberfläche, übertragen. Diesen Prozess bezeichnet man auch als «molekulare Tektonik».

Roman Fasel, Leiter des Empa-Labors «nanotech@surfaces», der die Studie leitete, fügt hinzu: «Händige Metalloberflächen sind bei der enantioselektiven heterogenen Katalyse – ein chemischer Prozess, um sehr selektiv chirale Moleküle zu produzieren – von grossem Interesse. Unsere Arbeit zeigt nun einen relativ einfachen Weg, wie man solche Oberflächen herstellen kann, nur durch das «Andocken» chiraler Moleküle, die die Oberfläche in die gewünschte chirale Morphologie umstrukturieren.»

Dennoch ist zu beachten, dass die aktuellen Resultate nur einen Grundsatzbeweis liefern – bei der Umsetzung in die Praxis heisst es nun, ein geeignetes Molekül zu finden, das die katalytische Metalloberfläche in die gewünschte Form bringt, um tatsächlich nur ein Enantiomer (Spiegelbildisomer) entstehen zu lassen und nicht beide. Wahrlich keine einfache Aufgabe, aber die vorliegende Arbeit könnte Bemühungen in diese Richtung wesentlich beschleunigen.

Chiralität und Medikamentenentwicklung – die Contergan-Tragödie

Chiralität – oder «Händigkeit» – ist eine bemerkenswerte Eigenschaft der biologischen Welt. Viele organische Moleküle, einschliesslich Glukose und die meisten Aminosäuren, sind chiral und die DNS-Doppelhelix in seiner Standardform windet sich wie eine rechts gewundene Schraube.

Die Bedeutung der Chiralität in biologischen Systemen wurde durch die Contergan-Tragödie auf verheerende Weise ans Licht gebracht. Contergan mit dem Wirkstoff Thalidomid wurde zwischen 1957 und 1962 häufig an Schwangere gegen Morgenübelkeit verschrieben. Wird das Medikament jedoch während dem ersten Schwangerschaftsdrittel eingenommen, verhindert Thalidomid die normale Entwicklung des Fötus, was zur Folge hatte dass Tausende von Kindern auf der ganzen Welt mit schweren Missbildungen zur Welt kamen.

Thalidomid ist ein chirales Molekül, und das Medikament, das vertrieben wurde, war eine 50:50-Mischung von links- und rechtshändigen Molekülen. Während das linkshändige Molekül pharmakologisch wie gewünscht wirkt, ist das rechtshändige schädlich. «Thalidomid wurde später als Wirkstoff gegen Krebs und Lepra eingesetzt. Es wird immer noch als 50:50-Mischung beider Isomere verschrieben, weil das heilsame Isomer im menschlichen Körper in sein Spiegelbild umgewandelt wird, dementsprechend ist eine Trennung sinnlos», erklärt Ernst.

«Aber es ist ein tragisches Beispiel für die verschiedenen biomedizinischen Wirkungen, die die beiden Formen von chiralen Medikamenten haben können.» Das ätherische Öl Carvon ist ein weiteres Beispiel, bei dem sich rechts- und linkshändige Form unterschiedlich verhalten – ein Spiegelbildisomer riecht nach Kümmel, das andere nach Minze.

«Unser Ziel ist es nun, ein besseres Verständnis des Prozesses der chiralen Induktion zu erlangen, und wir hoffen, dass diese neuen Erkenntnisse uns helfen werden, neue funktionelle Materialien oder Katalysatoren für die Wirkstoffsynthese zu entwickeln», so Fasel.

Weitere Informationen:

http://www.empa.ch/web/s604/crystal-chirality

Cornelia Zogg | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics