Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemische Reaktionen im Licht ultrakurzer Röntgenpulse aus Freie-Elektronen-Lasern

28.06.2018

Ultrakurze, hochintensive Röntgenblitze öffnen das Tor zu den Grundlagen chemischer Reaktionen. Freie-Elektronen-Laser erzeugen solche Pulse, doch es gibt ein Problem: Die Pulse variieren in Länge und Energie. Ein internationales Forschungsteam präsentiert nun eine Lösung: Ein Ring aus 16 Detektoren und ein zirkular polarisierter Laserstrahl ermöglichen es, beide Faktoren mit Attosekunden-Genauigkeit zu bestimmen.

Freie-Elektronen-Laser (FEL) erzeugen extrem kurze und intensive Röntgenblitze. Mit diesen können Forscher Strukturen vom Durchmesser eines Wasserstoffatoms erkennen. Biomoleküle lassen sich so in höchster Auflösung abbilden und völlig neue Einblicke in den Nanokosmos der Natur gewinnen.


Ultrakurze Röntgenpulse (rosa) ionisieren Neongas im Zentrum des Rings. Ein Infrarotlaser (orange) lenkt die Elektronen (blau) auf ihrem Weg zu den Detektoren ab

Bild: Terry Anderson / SLAC National Accelerator Laboratory


Illustration der ringförmig wie auf dem Zifferblatt einer Uhr angeordneten 16 Detektoren.

Bild: Frank Scholz & Jens Buck, DESY

Schießt man zwei solcher Blitze schnell hintereinander auf eine Probe, so erhält man sogar Informationen über die strukturellen Veränderungen während einer Reaktion: Ein erster Puls löst die Reaktion aus, mit einem zweiten Laserstrahl wird vermessen, wie die Struktur sich durch die Reaktion verändert. Doch die Technologie hat einen Haken: Der zeitliche Verlauf der Intensität und die Länge der Röntgenblitze variieren von Blitz zu Blitz. Das Bild bleibt unscharf.

Ein von Physikern der Technischen Universität München (TUM) angeführtes internationales Team hat nun eine Lösung gefunden: Mit einem zirkular polarisierten Infrarotlaser und einem Ring aus 16 Detektoren können sie den zeitlichen Verlauf und die Energie jedes Pulses präzise messen. Damit werden die Ergebnisse der einzelnen Pulse vergleichbar.

Eine Stoppuhr mit Attosekunden-Genauigkeit

„Eine Attosekunde ist der Milliardste Teil einer Milliardstel Sekunde, oder anders ausgedrückt: Eine Attosekunde verhält sich zu einer Sekunde in etwa wie eine Sekunde zum gesamten Alter des Universums“, sagt Reinhard Kienberger, Professor für Laser- und Röntgenphysik an der TU München. „Doch die energetischen Änderungen in einem Molekül während einer Reaktion sind so unglaublich fein und schnell, dass wir nur mit solch extrem kurzen Pulsen etwas sehen.“

In seinem Experiment benutzte das Forschungsteam Röntgenblitze der Linac Coherent Light Source in Menlo Park (USA). In der Probenkammer schlagen sie aus Neon-Atomen Elektronen heraus. Treffen diese nun auf einen Infrarot-Lichtimpuls, so werden sie von dessen elektrischem Feld beschleunigt oder abgebremst, je nach dem welche Feldstärke der Lichtpuls gerade hat, wenn das Elektron erzeugt wird.

Die zirkulare Polarisierung des Infrarotpulses gibt dem Elektron nun zusätzlich noch eine Richtung. Mit einem Ring aus 16 Detektoren sind daher Energie und Dauer des ursprünglichen Röntgenpulses wie auf dem Zifferblatt einer Uhr mit Attosekundengenauigkeit bestimmbar.

Die Information sowohl über die Energieverteilung als auch über die zeitliche Pulsstruktur soll es künftig erlauben, ganz spezifisch einzelne Reaktionsstellen in komplizierteren Molekülen anzusprechen und deren Einfluss auf den Verlauf der Veränderungen während der Reaktion in Echtzeit zu verfolgen.

Weiterentwicklung von Freie-Elektronen-Lasern

„Diese Technik kann nun auch dazu verwendet werden, die Entwicklung der FELs selbst voranzutreiben“, sagt Wolfram Helml, Leiter des Forschungsteams. „Wir erhalten eine sofortige Rückmeldung über die Pulsstruktur während der FEL durchgestimmt wird. So können wir gezielt Röntgenblitze mit ganz bestimmter Dauer oder energetischen Eigenschaften erzeugen.“

Von besonderem Interesse ist die neue Technik auch für Forschungsarbeiten am neuen European X-ray Free-Electron Laser (Eu-XFEL) in Hamburg, da sie im Unterschied zu anderen Techniken, auch für Messungen mit der hohen Wiederholrate genutzt werden kann, die diese hochmoderne Anlage zur Verfügung stellt.

Auch im Rahmen des gerade im Aufbau befindlichen Centre for Advanced Laser Applications (CALA) in Garching bei München, wo mithilfe laserbasierter Röntgentechnik Methoden zur Früherkennung und Therapie chronischer Krankheiten entwickelt werden sollen, könnte diese Technologie eingesetzt werden.

Publikation:

N. Hartmann, G. Hartmann, R. Heider, M. S. Wagner, M. Ilchen, J. Buck, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, A. A. Lutman, A. Marinelli, T. Maxwell, A. A. Miahnahri, S. P. Moeller, M. Planas, J. Robinson, A. K. Kazansky, N. M. Kabachnik, J. Viefhaus, T. Feurer, R. Kienberger, R. N. Coffee and W. Helml
Attosecond time–energy structure of X-ray free electron laser pulses
Nature Photonics volume 12, pages 215–220 (2018) – DOI: 10.1038/s41566-018-0107-6
https://www.nature.com/articles/s41566-018-0107-6

Weitere Informationen:

Gefördert wurden die Arbeiten durch die Deutsche Forschungsgemeinschaft im Rahmen des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP), durch das Bayerisch-Kalifornischen Hochschulzentrum (BaCaTeC), durch die Europäische Gemeinschaft im Rahmen der Initiative Laserlab-Europe IV, des European XFEL, eines Consolidator Grants des European Research Councils und eines Marie Curie Stipendiums, durch das US Department of Energy (US DOE), das spanische Ministerio de Economia, Industria y Competividad (MINECO), das Schweizer National Center of Competence in Research, Molecular Ultrafast Science and Technology (NCCR-MUST), die Volkswagen Stiftung und durch ein Peter Paul Ewald Stipendium.

Beteiligt an den Arbeiten zu dieser Publikation waren Wissenschaftler der TU München und der LMU München, des SLAC National Accelerator Laboratory (USA), des Deutschen Elektronen-Synchrotron (DESY), des European X-ray Free-Electron Laser (Eu-XFEL), der Universität Kassel, der Universität Gothenburg (Schweden), der Universität Bern (Schweiz), der University of Colorado in Boulder (USA), der baskischen Universität in San Sebastian (Spanien) und der Lomonossov Universität Moskau (Russland).

Kontakt:

Prof. Dr. Reinhard Kienberger
Technische Universität München
Lehrstuhl für Laser- und Röntgenphysik, E11
James Frank Str., 85748 Garching, Germany
Tel.: +49 89 289 12840 – E-Mail: reinhard.kienberger@tum.de
Internet: http://www.e11.ph.tum.de

Dr. Wolfram Helml
Ludwig-Maximilians-Universität München
Fakultät für Physik, Lehrstuhl für Experimentalphysik – Laserphysik
Am Coulombwall 1, 85748 Garching, Deutschland
Tel.: +49 89 289 14169 – E-Mail: Wolfram.Helml@lmu.de
Web: https://www.munich-photonics.de/people/details/p/wolfram-helml/

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34773/ Link zur Presseinformation
https://www.munich-photonics.de Exzellenzcluster Munich-Centre for Advanced Photonics
https://www.xfel.eu/index_ger.html European XFEL
https://www6.slac.stanford.edu/ SLAC National Accelerator Laboratory

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Magische kolloidale Cluster
11.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kupferverbindung als Recheneinheit in Quantencomputern
11.12.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics