Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemiker-Origami: Moleküle gezielt in schraubenförmige Strukturen falten

25.04.2016

Wie man Moleküle schraubenförmig aufwindet, beschreibt ein internationales Forscherteam in der Zeitschrift „Angewandte Chemie“. Die Wissenschaftler ahmten mit künstlichen Molekülen die Prinzipien nach, mit denen die Natur Biomolekülen ihre Funktion verleiht. An bestimmten Stellen im Molekül fügten sie Schwefelbrücken ein. So entstanden gezielt links- oder rechtsgewundene Helixstrukturen. Den Forschern gelang es auch, die Struktur von einem Molekül auf ein anderes zu übertragen. Das Team bestand aus Wissenschaftlern vom CNRS und der Universität Bordeaux, der Ruhr-Universität Bochum sowie der Universität Kumamoto.

Künstliche Moleküle sind wie ein Blatt Papier. Chemiker können sie gezielt in bestimmte Formen falten. Die Form eines Moleküls auf ein anderes zu übertragen, ist jedoch eine besondere Herausforderung.


Eine Art Origami für chemische Substanzen hat ein Forscherteam entwickelt, dem auch der Bochumer Wissenschaftler Prof. Dr. Nils Metzler-Nolte angehört.

© RUB, Katja Marquard

Wie man Moleküle schraubenförmig aufwindet, beschreibt ein internationales Forscherteam in der Zeitschrift „Angewandte Chemie“. Die Wissenschaftler ahmten mit künstlichen Molekülen die Prinzipien nach, mit denen die Natur Biomolekülen ihre Funktion verleiht.

Struktur bestimmt Funktion von Molekülen

„Die Form von Molekülen bestimmt maßgeblich ihre Funktion“, sagt Prof. Dr. Nils Metzler-Nolte von der Ruhr-Universität Bochum, einer der Beteiligten. Ein Beispiel aus der Natur: „Wenn sich die Form bestimmter Enzyme verändert, verursacht das Krankheiten wie Krebs oder Alzheimer.“

Metzler-Nolte vom Lehrstuhl für Anorganische Chemie II kooperierte mit einem Team um Dr. Ivan Huc und Dr. Christos Tsiamantas vom CNRS und der Universität Bordeaux sowie japanischen Kollegen der Universität Kumamoto.

Helix-Form: eine besondere Herausforderung

Bislang war es eine Herausforderung gewesen, künstlichen Molekülen gezielt eine bestimmte Helix-Struktur zu verpassen. Denn es war nur schwer kontrollierbar, ob sich ein Molekül links- oder rechtsherum schraubenförmig aufwindet. Genau das gelang dem Team aus Frankreich, Deutschland und Japan. Darüber hinaus zeigten die Wissenschaftler auch einen Mechanismus, mit dem eine Helix ihre Struktur durch einfache Berührung auf ein anderes Molekül übertragen kann.

Moleküle falten wie ein Blatt Papier

Die Chemiker arbeiteten mit sogenannten aromatischen Oligoamiden. Dabei handelt es sich um kettenförmige Moleküle, die sich von Ammoniak ableiten. Zu Beginn lagen sie als gerade Schnur mit knubbeligen Bereichen vor. „So wie eine Kette mit Perlen, die ungeordnet vor einem auf dem Tisch liegt“, veranschaulicht Metzler-Nolte. Dann falteten die Forscher das Molekül in die gewünschte räumliche Struktur, indem sie an einigen Positionen der Kette Schwefelbrücken einbauten, also Bindungen zwischen zwei Schwefelatomen.

„So falten wir ein Molekül wie ein Blatt Papier, das man immer wieder knickt“, vergleicht Nils Metzler-Nolte. Die Forscher erzeugten dabei sowohl links- als auch rechtsgewundene Helices.

Moleküle übertragen ihre Form aufeinander

In weiteren Versuchen verknüpften sie zwei Helices an den beiden Enden miteinander. Obwohl es darüber hinaus keine Kontaktstellen gab, glichen die so verbundenen Moleküle ihre Struktur aneinander an. Entweder formten beide eine linksgewundene Helix oder beide eine rechtsgewundene Helix.

Diese Prinzipien – Faltung und Ringschluss – nutzt auch die Natur; so entstehen Biomoleküle mit besonderen Eigenschaften. In künftigen Studien möchten die Forscher die Techniken anwenden, um Moleküle für die Katalyse oder Energieumwandlung zu designen.

Förderung

Die Europäische Union förderte die Arbeiten zu dieser Veröffentlichung im Rahmen der „Marie Curie Actions“ (FP7-PEOPLE-2010-ITN-264645 und DYNAMOL). Weitere Unterstützung kam von der Deutschen Forschungsgemeinschaft und Agence Nationale de la Recherche im Rahmen des gemeinsamen Projekts „Foldhyd“ (ME 1378/15-1 und ANR-14-CE35-0016).

Originalveröffentlichung

C. Tsiamantas, X. de Hatten, C. Douat, B. Kauffmann, V. Maurizot, H. Ihara, M. Takafuji, N. Metzler-Nolte, I. Huc (2016): Selective dynamic assembly of disulfide macrocyclic helical foldamers with remote handedness, Angewandte Chemie International Edition, DOI: 10.1002/anie.201601156

Pressekontakt

Prof. Dr. Nils Metzler-Nolte, Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Tel.: 0234 32 24153, E-Mail: nils.metzler-nolte@rub.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Türsteher im Gehirn
06.08.2020 | Institute of Science and Technology Austria

nachricht Peptide: Forschungs-Erfolg mit den kleinen Geschwistern der Proteine
06.08.2020 | Hochschule Coburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics