Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemiker erzeugen durch Nachahmung der Natur Organellen-Cluster

02.11.2016

Forschern der Universität Basel ist es gelungen, sphärische Kompartimente in Cluster zu gliedern. Dabei diente die Bildung komplexer Strukturen durch Organelle als Vorbild. Als Bindeglied zwischen den synthetischen Kompartimenten dienten DNA-Brücken. Dies ist ein wichtiger Schritt in Richtung der Verwirklichung sogenannter molekularer Fabriken. Die Zeitschrift Nano Letters hat die Ergebnisse der Forscher veröffentlicht.

Innerhalb der Zelle existieren spezielle Kompartimente, die als Organelle bezeichnet werden, beispielsweise der Zellkern, die Mitochondrien, Peroxisomen und Vakuolen. Diese sind jeweils für bestimmte Zellfunktionen zuständig. Nahezu alle ausgeklügelten biologischen Zellfunktionen werden mittels Selbstorganisation realisiert. Dabei ordnen sich Moleküle ohne Anleitung von aussen auf eine bestimmte Art und Weise an, die auf ihren jeweiligen Konformationen und Eigenschaften basiert.


Zwei Polymersomen verbinden sich durch DNA Hybridisierung: die einzelnen DNA-Stränge an der Oberfläche der Kompartimente schliessen sich zusammen und bilden so eine äusserst stabile DNA-Brücke.

Universität Basel

Die Nutzung der Selbstorganisation von Nano-Objekten zu komplexen Strukturen ist eine wesentliche Strategie, um neue Materialien mit verbesserten Eigenschaften oder Funktionen in Bereichen wie Chemie, Elektronik und Technik herzustellen.

So wurde diese Strategie beispielsweise bereits eingesetzt, um Geflechte aus anorganischen Feststoff-Nanopartikeln zu erzeugen. Bisher konnten diese Geflechte jedoch nicht ausgereifte Strukturen imitieren, die innerhalb der Zellen biologische Funktionen haben und somit für einen Einsatz in Medizin oder Biologie in Betracht kommen.

DNA-Brücken verleihen Stabilität

Die gemeinsame Arbeit der Forschergruppen unter der Leitung von Professorin Cornelia Palivan und Professor Wolfgang Meier bietet nun einen neuen Ansatz für die Selbstorganisation von künstlichen Organellen zu Clustern, der die Verbindung zwischen ihren natürlichen Gegenstücken imitiert. Durch die Nutzung einzelner DNA-Stränge zur Verbindung der sphärischen Kompartimente gelang es den Forschern, Cluster gemäss einer spezifischen Architektur und mit kontrollierten Eigenschaften zu erzeugen.

«Wir haben gespannt beobachtet, dass die einzelnen DNA-Stränge an der Oberfläche der sphärischen Kompartimente sich zusammengeschlossen und eine Brücke mit den DNA-Strängen des nächsten Kompartiments gebildet haben», so Palivan. Bei dieser DNA-Brücke handelt es sich um eine äusserst stabile Verbindung.

Diese von der Natur inspirierte Strategie geht über die eigentlichen Ansätze der Selbstorganisation hinaus, da sie zudem die Integration von verschiedenen Anforderungen ermöglicht, beispielsweise die Feinabstimmung des Abstands zwischen den einzelnen Kompartimenten oder verschiedene räumliche Strukturen «on demand». Als Kompartimente nutzten die Forscher Polymersomen mit einer synthetischen Membran, die im Gegensatz zu Liposomen den grossen Vorteil bietet, dass sie äusserst stabil ist und die Verschmelzung einzelner Kompartimente innerhalb der Zelle kontrolliert.

Ein weiterer einzigartiger Vorteil dieser Strategie zur Bildung von Nanoclustern ist die Tatsache, dass die Kompartimente mit Reaktionspartnern wie Enzymen, Proteinen oder Katalysatoren bestückt werden können. Dies liefert die Grundlage für die künftige Entwicklung künstlicher Organelle, die als molekulare Fabriken dienen. Diese Forschungsarbeit wurde im Rahmen des Nationalen Forschungsschwerpunkts (NFS) Molecular Systems Engineering durchgeführt.

Originalartikel

Juan Liu, Viktoriia Postupalenko, Samuel Lörcher, Dalin Wu, Mohamed Chami, Wolfgang Meier, Cornelia G. Palivan
DNA-mediated self-organization of polymeric nanocompartments leads to interconnected artificial organelles
Nano Letters (2016), doi: 10.1021/nanolett.6b03430

Weitere Auskünfte

Prof. Dr. Cornelia G. Palivan, Universität Basel, Departement Chemie, Tel. +41 61 267 38 39. E-Mail: Cornelia.Palivan@unibas.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Berichte zu: Chemiker DNA-Stränge Geflechte Nachahmung Organelle Palivan Zellfunktionen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem
24.05.2019 | Universität Leipzig

nachricht Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken
24.05.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics