Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemiker der Uni Bonn lüften langjähriges Rätsel

13.11.2019

Die Photochemie nutzt Licht als Aktivierungsenergie, um etwa Schmierstoffe, umweltverträgliche Kunststoffe oder besonders widerstandsfähige Lacke herzustellen. Als Voraussetzung muss vorher die Quantenausbeute experimentell bestimmt werden. Hierfür wird seit 1956 ein Ferrioxalat-Aktinometer verwendet. Wie es chemisch funktioniert, blieb bisher im Dunkeln. Ein Team aus Chemikern und einem Bachelor-Studenten der Universität Bonn hat das Rätsel nun gelüftet. Die Ergebnisse sind vorab online in „Physical Chemistry Chemical Physics“ erschienen. Die Druckausgabe erscheint demnächst.

Die meisten chemischen Reaktionen benötigen eine gewisse Energie, damit sie überhaupt ablaufen. Diese Aktivierungsenergie wird meist durch Heizen der Reaktionsmischung zur Verfügung gestellt.


Der Funktionsweise des Ferrioxalat-Aktinometers auf der Spur: Prof. Dr. Peter Vöhringer (links) und Frank Hendrik Pilz (rechts) im Labor der Molekularen Physikalischen Chemie der Universität Bonn.

(c) Foto: Volker Lannert/Uni Bonn

„Eine solche thermische Aktivierung hat viele Nachteile: Sie ist oftmals sehr ineffizient und sehr teuer“, sagt Prof. Dr. Peter Vöhringer vom Institut für Physikalische und Theoretische Chemie der Universität Bonn. Basiert die thermische Aktivierung zudem noch auf der Verbrennung fossiler Energieträger, dann belastet die chemische Reaktion die Umwelt durch Emission von Kohlendioxid in die Atmosphäre.

Eine nachhaltige Alternative ist die Aktivierung durch Licht. Solche photochemischen Reaktionen werden industriell in großen Maßstäben genutzt – zum Beispiel bei der Produktion von Lösungsmitteln oder Schmierstoffen, bei der Herstellung von umweltverträglichen Kunststoffen oder von besonders widerstandsfähigen Lacken.

Sogar in der Dentalmedizin findet die Photochemie heute Anwendung: bei der Karies-Behandlung durch Komposit-Füllungen, deren Material durch Bestrahlung mit Licht direkt am behandelten Zahn ausgehärtet wird.

Der Standard funktioniert – aber man weiß nicht wie

Die Photochemie ist besonders umweltschonend und nachhaltig, wenn für die Aktivierung Sonnenlicht verwendet werden kann. Das hängt aber ganz wesentlich von der Effizienz der gewünschten photochemischen Reaktion ab, die durch die experimentelle Bestimmung der sogenannten Quantenausbeute spezifiziert wird. Seit mehr als einem halben Jahrhundert wird international für solche Zwecke das Ferrioxalat-Aktinometer verwendet.

„Bemerkenswert ist dabei allerdings, dass über den molekularen Mechanismus des Ferrioxalat-Aktinometers bis heute nur sehr wenig bekannt ist“, sagt Vöhringer. Seit Jahrzehnten wird ein wissenschaftlicher Standard verwendet, von dem man wisse, dass er funktioniert – aber nicht wie.

Sogar Forschungsarbeiten, die unlängst mit Hilfe von freien Elektronenlasern an Großforschungseinrichtungen durchgeführt wurden, konnten bislang noch keine befriedigenden Resultate liefern.

Das Ferrioxalat-Aktinometer basiert auf einer wässrigen Lösung eines Moleküls, in dessen Zentrum sich ein dreifach positiv geladenes Eisen-Ion (Fe3+) befindet, das seinerseits negativ-geladene Molekülgruppen anlagert – die Oxalat-Liganden.

„Unstrittig war bislang, dass durch Bestrahlung mit Licht die Fe3+-Ionen sich in Fe2+-Ionen umwandeln, die dann nur noch zweifach positiv geladen sind“, sagt Frank Hendrik Pilz aus Vöhringers Team. Zudem sei schon seit Längerem vermutet worden, dass sich dabei auch Oxalat-Liganden abspalten und zusätzlich noch Kohlendioxid-Moleküle freigesetzt werden. „Bislang war allerdings völlig unklar, in welcher Reihenfolge diese drei Schritte erfolgen und wie schnell sie in der wässrigen Lösung eigentlich ablaufen.“

Frank Hendrik Pilz hat nun in seiner Bachelor-Arbeit die kurzen Lichtblitze eines Lasers verwendet, um die Ferrioxalat-Moleküle zu bestrahlen. Die Abspaltung der Oxalat-Liganden aus den Ferrioxalat-Molekülen wies er dann mit dem Licht eines an den Laser gekoppelten Infrarot-Spektrometers nach.

Dabei nutzte er aus, dass man mit dem Infrarot-Licht die Oxalat-Liganden besonders gut beobachten kann und dass sich ihre Schwingungen auf eine ganz bestimmte Weise verändern, wenn diese das Ferrioxalat verlassen.

Der Bachelor-Absolvent konnte in seiner Arbeit nun eindeutig zeigen, dass es tatsächlich sogar zwei Ferrioxalat-Moleküle benötigt, um einen Oxalat-Liganden abzuspalten und dass diese Reaktion innerhalb einer tausendstel Sekunde abläuft.

Vöhringer: „Damit hat Frank Hendrik Pilz endlich die Schlüsselreaktion des Ferrioxalat-Aktinometers gemessen, die bislang allen früheren Forschungsarbeiten gänzlich verborgen war.“

Es sei außergewöhnlich, dass ein Bachelor-Studierender der Chemie bereits international publiziert. Das Journal „Physical Chemistry Chemical Physics“ hat den Beitrag sogar als besonders wichtigen „Hot Article“ benannt.

„Dieser frühe Erfolg des Studierenden zeigt, wie wissenschaftlich hochwertig die Ausbildung in der Chemie an der Universität Bonn erfolgt“, sagt Vöhringer. Pilz studiert mittlerweile im Chemie-Master-Programm der Universität Bonn. „Forschung macht Spaß, deshalb möchte ich gerne weitermachen“, sagt er.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Peter Vöhringer
Institut für Physikalische und Theoretische Chemie
Abteilung für Molekulare Physikalische Chemie
Tel. 0228/737050
E-Mail: p.voehringer@uni-bonn.de

Originalpublikation:

Frank Hendrik Pilz, Jörg Lindner and Peter Vöhringer: Time-resolved Fourier-transform infrared spectroscopy reveals the hidden bimolecular process of the ferrioxalate actinometer, Physical Chemistry Chemical Physics, DOI: 10.1039/c9cp05233j

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf
24.02.2020 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Pflanzenkulturhalle geht auf Reisen – Modell-Container wird ab Ende März in Dresden präsentiert
24.02.2020 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantencomputern das Lernen beibringen

24.02.2020 | Physik Astronomie

Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf

24.02.2020 | Biowissenschaften Chemie

Wie Erdbeben die Schwerkraft verformen

24.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics