Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie steuert Magnetismus

09.10.2015

Magnete sind aus dem Physikunterricht gut bekannt, im Fach Chemie werden sie dagegen nicht behandelt. Und doch ist es ein chemisches Verfahren, mit dem es Forschern am Karlsruher Institut für Technologie (KIT) gelungen ist, die magnetischen Eigenschaften von Ferromagneten zu steuern. Während physikalische Verfahren zwar die Ausrichtung des Magnetfeldes beeinflussen können, steuert hier das chemische Verfahren den Magnetismus des Materials selbst. Das genutzte Prinzip ist dabei dem Konzept des Lithium-Ionen-Akkus ähnlich. (DOI: 10.002/adma-201305932)

Über physikalische Effekte gibt es durchaus Möglichkeiten, Magnete zu beeinflussen. Standard-Methoden nutzen etwa eine elektromagnetische Spule, die durch Strom ein Magnetfeld erzeugt, jedoch verbraucht sie durchgehend Energie. Eine andere Möglichkeit ist, einen Ferromagneten zu polarisieren, also die magnetischen Strukturen in dem Material parallel auszurichten, so dass ein Gesamt-Magnetfeld entsteht.


Mit der Ein- und Auslagerung von Lithium-Ionen in bestimmte Magneten lässt sich deren Magnetstärke gezielt steuern.

(Grafik: KIT/Wiley-VCH)

Dies benötigt zwar zum Halten des Magnetfeldes keine Energie, es ist jedoch permanent und lässt sich nur mit Aufwand aufheben. Eine andere Option ist die magnetoelektrische Kopplung, bei der ein elektrisches Feld Magnetismus induziert. Allerdings greift diese Methode häufig nur an der obersten Atomschicht des Kristallgitters, die Änderung des Magnetfeldes ist also minimal.

Das nun am KIT entwickelte chemische Verfahren zur Kontrolle des Magnetismus bietet einen neuen Ansatz, der über die zuvor beschriebenen Konzepte hinausgeht: Der Vorgang beeinflusst das gesamte Material, nicht nur die Oberfläche, und ist dabei reversibel, kann also rückgängig gemacht werden.

Zusätzlich – und das ist die wichtigste Innovation dieses Verfahrens – ist der jeweilige magnetische Zustand des Materials (magnetisch / nicht magnetisch) nicht volatil. Das heißt, der Zustand bleibt, im Gegensatz zu einer elektromagnetischen Spule, auch ohne Stromzufuhr und damit ohne kontinuierlichen Energieverbrauch aufrechterhalten.

„Tausendfache Lade- und Entladezyklen von Lithium-Ionen Akkus, wie sie etwa in Handys genutzt werden, zeigen, dass elektrochemische Vorgänge durchaus reversibel sein können. Dies brachte uns auf die Idee, ähnliche Strukturen wie Lithium-Ionen-Akkus zu erforschen“, sagt Subho Dasgupta vom Institut für Nanotechnologie des KIT. Beim Laden und Entladen eines Lithium-Ionen Akkus wandern die Ionen jeweils vom einen zum anderen Akku-Pol und lagern sich dabei in die Elektroden ein.

Die Wissenschaftler um Dasgupta haben nun einen Lithium-Ionen-Akku erstellt, bei dem eine Elektrode aus Maghemit, einem ferromagnetischen Eisenoxid (γ-Fe2O3), besteht und die andere aus reinem Lithium. Experimente zeigten, dass die Lithium-Ionen-Einlagerung in Maghemit dessen Magnetstärke reduziert, auch bei Raumtemperatur.

Durch die gezielte Steuerung der Lithium-Ionen, also durch Laden und Entladen des Akkus, lässt sich somit die Magnetfeldstärke des Maghemits kontrollieren. Dieser Effekt ist, genau wie bei normalen Lithium-Ionen-Akkus, wiederholbar.

Bei den vorgestellten Versuchen erreichten die Forscher eine Änderung der Magnetstärke um bis zu 30 Prozent. Das langfristige Ziel ist jedoch, den Magneten komplett an- und ausschalten zu können. Damit hoffen die Wissenschaftler ein Verfahren zu finden, mit dem sich ein Magnetschalter realisieren lässt, der vom Prinzip her wie ein elektrischer Transistor funktioniert: Während ein elektrischer Transistor mit einem Steuerstrom einen kontrollierten Stromkreislauf an- oder ausschaltet, schaltet der Magnetschalter mit dem Steuerstrom einen Ferromagneten an oder aus.

Das Verfahren kann prinzipiell alle Anwendungen ersetzen, in denen niederfrequente Elektromagneten zum Einsatz kommen und ist dabei deutlich energieeffizienter. Die Wissenschaftler des KIT haben mit ihrer Forschung vor allem winzige magnetische Schalter im Blick, die etwa bei (Mikro-) Robotern oder in der Mikrofluidik Anwendung finden.

Veröffentlichung und vollständiges Grafik-Copyright:
Dasgupta, S.; Das, B.; Knapp, M., Brand, Richard. A.; Ehrenberg, H.; Kruk, R. and Hahn, H. (2014), Intercalation-Driven Reversible Control of Magnetism in Bulk Ferromagnets. Adv. Mater., 26: 4639–4644. doi:10.1002/adma.201305932
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission

Online-Artikel (zugangsbeschränkt): http://onlinelibrary.wiley.com/doi/10.1002/adma.201305932/full

Weiterer Kontakt:
Simon Scheuerle, Abteilung Presse, Tel.: +49 721 608-48761, Fax: +49 721 608-43658, E-Mail: simon.scheuerle@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/adma.201305932/full

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Human-Antikörper statt Pferdeseren für die Behandlung von Diphtherie
21.01.2020 | Technische Universität Braunschweig

nachricht Hepatitis-B-Viren: Leberzellen nicht wehrlos
21.01.2020 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Human-Antikörper statt Pferdeseren für die Behandlung von Diphtherie

21.01.2020 | Biowissenschaften Chemie

Mit Mixed Reality Maschinen überwachen

21.01.2020 | Informationstechnologie

Hydraulische Hubtisch – Plattformwaage PCE-HLTS 500 mit individueller Arbeitshöhe

21.01.2020 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics