Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie steuert Magnetismus

09.10.2015

Magnete sind aus dem Physikunterricht gut bekannt, im Fach Chemie werden sie dagegen nicht behandelt. Und doch ist es ein chemisches Verfahren, mit dem es Forschern am Karlsruher Institut für Technologie (KIT) gelungen ist, die magnetischen Eigenschaften von Ferromagneten zu steuern. Während physikalische Verfahren zwar die Ausrichtung des Magnetfeldes beeinflussen können, steuert hier das chemische Verfahren den Magnetismus des Materials selbst. Das genutzte Prinzip ist dabei dem Konzept des Lithium-Ionen-Akkus ähnlich. (DOI: 10.002/adma-201305932)

Über physikalische Effekte gibt es durchaus Möglichkeiten, Magnete zu beeinflussen. Standard-Methoden nutzen etwa eine elektromagnetische Spule, die durch Strom ein Magnetfeld erzeugt, jedoch verbraucht sie durchgehend Energie. Eine andere Möglichkeit ist, einen Ferromagneten zu polarisieren, also die magnetischen Strukturen in dem Material parallel auszurichten, so dass ein Gesamt-Magnetfeld entsteht.


Mit der Ein- und Auslagerung von Lithium-Ionen in bestimmte Magneten lässt sich deren Magnetstärke gezielt steuern.

(Grafik: KIT/Wiley-VCH)

Dies benötigt zwar zum Halten des Magnetfeldes keine Energie, es ist jedoch permanent und lässt sich nur mit Aufwand aufheben. Eine andere Option ist die magnetoelektrische Kopplung, bei der ein elektrisches Feld Magnetismus induziert. Allerdings greift diese Methode häufig nur an der obersten Atomschicht des Kristallgitters, die Änderung des Magnetfeldes ist also minimal.

Das nun am KIT entwickelte chemische Verfahren zur Kontrolle des Magnetismus bietet einen neuen Ansatz, der über die zuvor beschriebenen Konzepte hinausgeht: Der Vorgang beeinflusst das gesamte Material, nicht nur die Oberfläche, und ist dabei reversibel, kann also rückgängig gemacht werden.

Zusätzlich – und das ist die wichtigste Innovation dieses Verfahrens – ist der jeweilige magnetische Zustand des Materials (magnetisch / nicht magnetisch) nicht volatil. Das heißt, der Zustand bleibt, im Gegensatz zu einer elektromagnetischen Spule, auch ohne Stromzufuhr und damit ohne kontinuierlichen Energieverbrauch aufrechterhalten.

„Tausendfache Lade- und Entladezyklen von Lithium-Ionen Akkus, wie sie etwa in Handys genutzt werden, zeigen, dass elektrochemische Vorgänge durchaus reversibel sein können. Dies brachte uns auf die Idee, ähnliche Strukturen wie Lithium-Ionen-Akkus zu erforschen“, sagt Subho Dasgupta vom Institut für Nanotechnologie des KIT. Beim Laden und Entladen eines Lithium-Ionen Akkus wandern die Ionen jeweils vom einen zum anderen Akku-Pol und lagern sich dabei in die Elektroden ein.

Die Wissenschaftler um Dasgupta haben nun einen Lithium-Ionen-Akku erstellt, bei dem eine Elektrode aus Maghemit, einem ferromagnetischen Eisenoxid (γ-Fe2O3), besteht und die andere aus reinem Lithium. Experimente zeigten, dass die Lithium-Ionen-Einlagerung in Maghemit dessen Magnetstärke reduziert, auch bei Raumtemperatur.

Durch die gezielte Steuerung der Lithium-Ionen, also durch Laden und Entladen des Akkus, lässt sich somit die Magnetfeldstärke des Maghemits kontrollieren. Dieser Effekt ist, genau wie bei normalen Lithium-Ionen-Akkus, wiederholbar.

Bei den vorgestellten Versuchen erreichten die Forscher eine Änderung der Magnetstärke um bis zu 30 Prozent. Das langfristige Ziel ist jedoch, den Magneten komplett an- und ausschalten zu können. Damit hoffen die Wissenschaftler ein Verfahren zu finden, mit dem sich ein Magnetschalter realisieren lässt, der vom Prinzip her wie ein elektrischer Transistor funktioniert: Während ein elektrischer Transistor mit einem Steuerstrom einen kontrollierten Stromkreislauf an- oder ausschaltet, schaltet der Magnetschalter mit dem Steuerstrom einen Ferromagneten an oder aus.

Das Verfahren kann prinzipiell alle Anwendungen ersetzen, in denen niederfrequente Elektromagneten zum Einsatz kommen und ist dabei deutlich energieeffizienter. Die Wissenschaftler des KIT haben mit ihrer Forschung vor allem winzige magnetische Schalter im Blick, die etwa bei (Mikro-) Robotern oder in der Mikrofluidik Anwendung finden.

Veröffentlichung und vollständiges Grafik-Copyright:
Dasgupta, S.; Das, B.; Knapp, M., Brand, Richard. A.; Ehrenberg, H.; Kruk, R. and Hahn, H. (2014), Intercalation-Driven Reversible Control of Magnetism in Bulk Ferromagnets. Adv. Mater., 26: 4639–4644. doi:10.1002/adma.201305932
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission

Online-Artikel (zugangsbeschränkt): http://onlinelibrary.wiley.com/doi/10.1002/adma.201305932/full

Weiterer Kontakt:
Simon Scheuerle, Abteilung Presse, Tel.: +49 721 608-48761, Fax: +49 721 608-43658, E-Mail: simon.scheuerle@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/adma.201305932/full

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics