Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie aus der Natur

02.04.2012
Erdöl ist ein wichtiger Rohstoff für die chemische Industrie. Doch diese fossile Ressource wird knapp und teuer. Eine alternative Kohlenstoffquelle ist Biomasse beispielsweise aus Holz, Maisstärke, Zuckerrüben oder Pflanzenöl.

Auch aus Reststoffen wie Molke oder Krabbenschalen lassen sich Kunststoffe, Lacke und Feinchemikalien herstellen. Wissenschaft und Wirtschaft bauen hierfür neue Prozesse auf. Zahlreiche Verfahren funktionieren schon im Labor oder in Technikumsanlagen. Nun müssen sie in einen Pilot- bis Demonstrationsmaßstab überführt werden.

Handys, Spielzeug, Computer, Haushaltsgeräte – fast jeder Alltagsgegenstand wird zum Teil aus Erdöl gemacht. Das schwarze Gold enthält viel Kohlenstoff und ist deshalb einer der wichtigsten Ausgangsstoffe für die chemische Industrie. Es steckt in zahlreichen Kunststoffen, Teppichböden, Gardinen, Wandfarben, Lacken, Seifen, Parfüms oder Haarsprays. Aber Kohlenstoff ist nicht nur im Erdöl, sondern auch in nachwachsenden Rohstoffen enthalten. Doch noch werden diese Kohlenstoffquellen kaum genutzt. Bislang gibt es erst einige wenige Biokunststoffe aus Cellulose, Stärke, Zucker, Milchsäure. Zudem gibt es einige erdölfreie Waschmittel und Kosmetika aus Pflanzenölen.

Aber lässt sich Erdöl überhaupt durch Biomasse ersetzen? Welche chemischen Stoffe können aus Pflanzen und Co. gewonnen werden? Diese und andere Fragen hat das US-amerikanische Energieministerium untersucht. Das Ergebnis: Einige Basischemikalien wie Milchsäure oder Sorbit lassen sich aus nachwachsenden Rohstoffen herstellen. Mithilfe dieser Grundbausteine können auch komplexe chemische Verbindungen aufgebaut werden – etwa für Treibstoffe, Verpackungen, Farben, Lacke, Kosmetika oder Medikamente, also fast jedes Produkt für den Endverbrauchermarkt. Darüber hinaus hat die International Energy Agency (IEA) Bionergy verschiedene biobasierte Chemikalien identifiziert, die sich in Bioraffinerien gewinnen lassen.

Aber noch ist die »grüne« Chemie eine Nische. Die Unternehmensberatung Arthur D. Little schätzte den Weltmarkt für Biochemikalien auf etwa 77 Milliarden US-Dollar (2009). Das entspricht nur vier Prozent des Gesamtumsatzes. Bis 2025 könne der Marktanteil aber auf bis zu 17 Prozent steigen, so die Prognose. Die Politik unterstützt und fördert den Umstieg auf diese nachhaltige Chemie: Die Bundesregierung hat Ende 2010 die 2,4 Milliarden Euro schwere »Nationale Forschungsstrategie BioÖkonomie 2030« beschlossen. Ziel ist es, durch Forschung und Innovation den Strukturwandel von einer erdöl- zu einer biobasierten Industrie zu ermöglichen.

»Wir müssen lernen, das Kohlenstoffreservoir der Natur noch besser zu nutzen«, betont Professor Thomas Hirth, Leiter des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart. Dann können nachwachsende Rohstoffe und die Weiße Biotechnologie eine Alternative zur Petrochemie werden. In den vergangenen Jahren haben Forscher bereits zahlreiche Verfahren entwickelt, um aus Biomasse wichtige Grundstoffe für die chemische Industrie zu gewinnen. »Aber noch bleiben viele Prozesse im Labor- und Pilotmaßstab stecken und kommen nicht in die industrielle Entwicklung«, so die Erfahrung von Hirth. »Zur effizienten und effektiven stofflichen Nutzung nachwachsender Rohstoffe sind neue und skalierbare Verfahren erforderlich, die eng mit bereits bestehenden Produktionsstrukturen vernetzt werden.«

Um die Lücke zwischen Labor und industrieller Umsetzung zu schließen, bauen Wissenschaftler des IGB und des Fraunhofer-Instituts für Chemische Technologie ICT das Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse CBP in Leuna. Auf einer Fläche von mehr als 2000 Quadratmetern entstehen derzeit Anlagen, Labore, Büros und Lagerräume. Mehr als 20 Industrieunternehmen sowie 15 Universitäten und Forschungseinrichtungen wollen sich an dem Projekt beteiligen. Gefördert wird das Vorhaben vom Bund und vom Land Sachsen-Anhalt.

www.cbp.fraunhofer.de

In Leuna wollen die Forscher unter anderem Holzabfälle als Kohlenstoffquelle nutzen. Dazu bauen sie eine Pilotanlage nach einem modifizierten Organosolv-Verfahren auf, mit dem sich das im Holz vorhandene Lignin herauslösen lässt. Darin werden zunächst aus Lignocellulose – das Biopolymer Lignocellulose bildet die Zellwände von verholzten Pflanzen – fermentierbarer Zucker und Lignin gewonnen. Anschließend setzen Bakterien den Zucker zu Basischemikalien um, die sich zum Beispiel für die Produktion von Kunststoffen wie Polyethylen einsetzen lassen. Die Phenole aus dem Holzbaustein Lignin wollen die Forscher für die Produktion von Klebstoffen oder für chemische Synthesen nutzen. Reststoffe dienen zur Energieerzeugung. So wird die nachwachsende Ressource Holz vollständig verwertet.

Weitere Schwerpunkte des CBP sind die Nutzung von Restbiomasse, die Gewinnung funktionaler Inhaltsstoffe und Energieträger aus Mikroalgen sowie die Entwicklung neuer technischer Enzyme. »Das Besondere am CBP ist, dass wir von Anfang an mit Industrieunternehmen zusammenarbeiten, die die gewonnenen Produkte weiterverwerten«, erläutert Hirth. Bereits in der Pilotphase wollen die beteiligten Chemiekonzerne die Wirtschaftlichkeit und Nachhaltigkeit der biotechnologischen Prozesse in den fünf zur Verfügung stehenden Pilotanlagen prüfen.

Das Fraunhofer CBP ist auch am Spitzencluster »BioEconomy« beteiligt, das vom Bundesministerium für Forschung und Bildung in den kommenden fünf Jahren mit bis zu 40 Millionen Euro gefördert wird. Mehr als 80 Unternehmen und Forschungseinrichtungen engagieren sich in dem Spitzencluster. »Unser Ziel ist es, die nachhaltige Wertschöpfung aus Non-food-Biomasse zu maximieren, indem wir daraus neuartige Werkstoffe und Materialien sowie Chemieprodukte und Energie gewinnen«, erklärt Professor Hirth, der den Cluster wissenschaftlich koordiniert.

http://bioeconomy.de

Gebraucht wird vor allem ein natürlicher Ersatz für die bisher aus Erdöl gefertigten Kunststoffe. Der Bedarf an Plaste ist riesig – allein in Europa verbraucht jeder Einzelne im Schnitt deutlich mehr als 100 Kilogramm pro Jahr. 2010 wurden weltweit etwa 265 Millionen Tonnen Kunststoff produziert, schätzt der europäische Branchenverband PlasticsEurope. Bislang decken wir nur einen kleinen Teil unseres Bedarfs mit Biokunststoff. Im Jahr 2010 wurden lediglich 724 000 Tonnen »grüner« Kunststoff hergestellt. Doch die Nachfrage nach Bioplastik soll in den kommenden Jahren deutlich steigen. Die Experten vom Interessensverband European Bioplastics erwarten, dass 2015 weltweit etwa 1,7 Millionen Tonnen »grüner« Kunststoff produziert werden.

Wie sich Polymere aus nachwachsenden Rohstoffen gewinnen, charakterisieren, modifizieren und verarbeiten lassen, untersuchen Forscher des Fraunhofer-Instituts für Angewandte Polymerforschung IAP in Golm. Die Wissenschaftler konzentrieren sich dabei vor allem auf Stärke und Cellulose als Ausgangsmaterial. Stärke ist eine wichtige Ressource für technische Anwendungen wie Papier, Baustoffe, Klebstoffe, Biokunststoffe, Reinigungsmittel, Kosmetik und Pharmazie. Aus Lignocellulose gewonnene Cellulose gehört zu den am häufigsten vorkommenden Biopolymeren. Daraus fertigt die Industrie unter anderem Folien, Vliesstoffe, Schwämme, Hygieneprodukte oder Klebstoffe.

Insbesondere bei der Entwicklung von Spinnprozessen diverser Biopolymere haben Forscher des IAP langjährige Erfahrungen. Diese kommen nun der Entwicklung eines neuen Spinnprozesses zur Herstellung von künstlichen Hochleistungsfasern aus AMSilk-Spinnenseidenproteinen zugute – einem gemeinsamen Projekt mit der Firma AMSilk GmbH.

Kunststoff aus Cellulose

Cellulose ist auch das Ausgangsmaterial für den Werkstoff Biograde®, den Wissenschaftler des Fraunhofer-Instituts für Umwelt-, Sicherheits- und Energietechnik UMSICHT in Oberhausen in Zusammenarbeit mit der FKuR Kunststoff GmbH entwickelt haben. In einem chemischen Prozess wird es in den Kunststoff Celluloseacetat umgewandelt. Beimischungen wie Weichmacher oder Füllstoffe machen das Material fließfähig und erhöhen seine Wärmeformbeständigkeit. Auch diese Zusätze stammen aus nachwachsenden Rohstoffen. Nach der Compoundierung ist der Biokunststoff einsatzfähig und kann zu unterschiedlichen Produkten verarbeitet werden – wie zum Beispiel zu Hüllen für Kugelschreiber oder Computer-Tastaturen. »Biograde® ist nicht nur umweltfreundlich, sondern besitzt für biobasierte Kunststoffe eine hohe Wärmefornbeständigkeit«, beschreibt Thomas Wodke vom UMSICHT die Vorzüge des Werkstoffs. Zu der Produktfamilie gehören noch zwei weitere »grüne« Polymere. Bio-Flex® ist ein Werkstoff für Blas- oder Flachfolien. Und das sehr steife und feste Fibrolon® eignet sich für Geschirr oder Werkzeugboxen.

Dass sich auch pflanzliche Roh- und Reststoffe der Agrar- und Forstwirtschaft für die Kunststoff-Herstellung nutzen lassen, zeigen die Forschungsaktivitäten des IAP. In dem Verbundprojekt LIGNOS konzentrieren sich die IAP-Forscher gemeinsam mit der Universität Potsdam und der aevotis GmbH darauf, mit Hilfe neu entwickelter biotechnologischer Verfahren die enthaltenen Biopolymere zu gewinnen und somit die Rohstoffpalette der chemischen Industrie maßgeblich zu erweitern. Im Fokus der Arbeiten steht Lignin, das bis dato lediglich zur Energiegewinnung verbrannt wird.

Den IAP-Forschern ist es sogar gelungen, aus Rübenschnitzeln (SBP – sugar beet pulp) − Reststoffe der Zuckerproduktion − Polyurethan zu fertigen. Aus dem Material werden zum Beispiel Matratzen, Schuhsohlen, Dichtungen oder Fußböden gemacht. Die IAP-Wissenschaftler haben die vorwiegend aus Pektin, Cellulose und Hemicellulose bestehenden Rübenschnitzel zunächst zu monomeren Zuckern abgebaut. Aus diesen Monomeren konnten sie dann Polyole synthetisieren, die sie anstelle von Sorbitol für die Polyurethanherstellung eingesetzt haben.

Folien aus Molke

Ein Abfallprodukt bei der Herstellung von Milchprodukten nutzen Forscher des IGB als Ausgangsstoff für einen integrierten biotechnologischen Prozess. Mit Hilfe von Michsäurebakterien lässt sich der in der Sauermolke enthaltene Milchzucker (Lactose) zu Milchsäure (Lactat) umsetzen. Lactat dient nicht nur als Konservierungs- und Säuerungsmittel in der Lebensmittelherstellung, sondern kann auch als Grundstoff in der chemischen Industrie eingesetzt werden – zum Beispiel in der Produktion von Polylactiden, einem biologisch abbaubaren Kunststoff.

Bislang ist Biokunststoff vor allem als Massenkunststoff für Verpackungen, Blister, Flaschen und Einweg-Geschirr in Einsatz. Aber lassen sich auch hochwertige Mehrschichtfolien aus biologischen Ausgangstoffen fertigen? In solchen Folien hindern derzeit meist noch petrochemisch basierte und teure Polymere wie Ethylen-Vinylalkohol-Copolymer (EVOH) als

Barrierematerial, dass Sauerstoff an die Nahrung gelangt. In dem EU-Projekt »Wheylayer« arbeiten Forscher an einem nachhaltigen Verpackungswerkstoff. Ihre Idee: Sie nutzen Molkeprotein für die Barrierefolie. Diese Folie hat mehrere Vorteile: Die Molkeproteinschicht lässt sich biologisch abbauen. Zudem verlängern die in der Molke natürlich vorkommenden Inhaltsstoffe die Haltbarkeit von Lebensmitteln. »Wir haben einen Prozess entwickelt, mit dem sich die Multifunktionsfolien im industriellen Maßstab wirtschaftlich herstellen lassen«, betont Markus Schmid vom Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV in Freising, das an dem Projekt beteiligt ist.

Ein wichtiger Bestandteil von Getränkekartons sind Beschichtungen. Forscher vom UMSICHT und des IVV arbeiten daran, diese ebenfalls aus nachwachsenden Rohstoffen zu fertigen. Das Substitutionspotenzial eines solchen Biokunststoffs wäre enorm: Allein in Deutschland werden etwa 44 000 Tonnen Beschichtungspolymere pro Jahr benötigt.

Doch noch erfüllen Biopolymere nicht immer alle Anforderungen, die heute an leistungsfähige Kunststoffe gestellt werden. So ist zum Beispiel Plastik aus Polymilchsäure (Polylactid, PLA) meist spröde und verfügt nur über eine geringe Schlagzähigkeit. Forscher des IAP haben gemeinsam mit ihren Kollegen aus den Fraunhofer-Instituten für Chemische Technologie ICT in Pfinztal und Werkstoffmechanik in Halle IWM eine Lösung entwickelt: Sie verstärken die natürlichen Kunststoffe mit Spinnfasern aus Cellulose (Rayon). Durch diese Kombination entsteht ein Material, das komplett biobasiert und bioabbaubar ist, aber dennoch stabil. Tenside und Schmierstoffe aus ­Biomasse

Aber nicht nur Kunststoffe kann man aus Biomasse gewinnen. Auch Harze, Weichmacher, Biotenside oder Lösungsmittel wollen Forscher aus nachwachsenden Rohstoffen fertigen. In dem EU-Projekt »BioConSepT« setzen die Mitarbeiter dabei auf Lignocellulose, pflanzliche Öle und Fette als Kohlenstoff-Quellen, die nicht in der Lebensmittelindustrie eingesetzt werden. Mit diesen Ressourcen der zweiten Generation sollen sich die Chemikalien um 30 Prozent günstiger und um 30 Prozent nachhaltiger fertigen lassen als mit entsprechenden chemischen Verfahren oder biotechnologischen Prozessen, die auf Rohstoffen der ersten Generation wie Glucose basieren. An dem Projekt arbeiten 31 Partner aus Forschung, Industrie sowie kleinen und mittelständischen Unternehmen mit – darunter auch das IGB.

Nachwachsende Rohstoffe – etwa Ester aus tierischen und pflanzlichen Fetten – bilden sogar die Grundlage für technische Schmierstoffe. Allerdings ist deren Herstellung noch sehr kosteninensiv. Das wollen Forscher des IVV ändern. Sie nutzen Jatropha-Öl als Basis zur Herstellung eines kostengünstigen, mineralölfreien und leistungsstarken biogenen Basisfluids für Kühlschmierstoffe in der industriellen Metallbearbeitung. Um das Basisfluid aus dem Öl der Jatrophapflanze zu gewinnen, benutzen die Forscher Lipasen. Es entsteht ein stabiles Gemisch von Estern, Glyceriden und Restöl. Das Verfahren weist eine annähernd hundertprozentige Rohstoffausbeute auf und erfordert weit weniger energie- und kostenintensive Reinigungsschritte. Krabbenschalen und Algen für Chemikalien

Ein bislang kaum genutztes Biopolymer ist Chitin. Es bildet das Außenskelett von Krebsen und Krabben. Mehr als 750 000 Tonnen Schalen dieser Krebstiere landen allein in der EU pro Jahr auf dem Müll. Wie sich dieser »Abfall« als Wertstoff für die chemische Industrie nutzen lässt, untersuchen Forscher in dem von der EU geförderten Projekt »ChiBio«. »Nach Art einer Bioraffinerie entwickeln wir für Krabbenschalen verschiedene stoffliche und energetische Nutzungswege – um so den Reststoff möglichst effizient und vollständig zu verwerten«, erläutert Prof. Dr. Volker Sieber, Koordinator von ChiBio und Leiter der IGB-Projektgruppe BioCat in Straubing.

Besonders vielseitig nutzbare nachwachsende Rohstoffe sind Algen: Sie können in Kraftstoffe, Strom, Wärme und Feinchemikalien umgewandelt werden. Wissenschaftler des IGB nutzen Mikroalgen zum Beispiel, um Fettsäuren und Carotinoide zu produzieren. In einem Flachplatten-Airlift-Reaktor werden die Algen in Massen gezüchtet und dann die Wertstoffe gewonnen.

Noch weiter geht der Ansatz des 2011 gestarteten EU-Pro­jekts. Forscher züchten in einer Abwasseraufbereitungsanlage in Südspanien Mikroalgen, um daraus großtechnisch Biokraftstoffe wie Methan oder Diesel zu gewinnen. Dabei untersuchen die Wissenschaftler die gesamte Prozesskette – von der Nährstoffeliminierung aus Abwasser über die Algenzucht, die Extraktion von Inhaltsstoffen bis zur nachgeschalteten Biokraftstoffproduktion. In dem Projekt arbeiten Forscher vom UMSICHT mit. Sie analysieren, wie das Algenöl zusammengesetzt ist und wie es sich am besten nutzen lässt. Die mehrfach ungesättigten Öle im Algenöl sind zum Beispiel für die Futtermittelindustrie interessant. Das restliche Algenöl reinigen die Forscher auf und setzen es zu Biodiesel um.

»Die Weiße Biotechnologie nutzt die Natur als chemische Fabrik. Herkömmliche chemische Produktionsprozesse werden durch den Einsatz von Mikroorganismen oder Enzymen ersetzt«, erläutert Thomas Hirth den Ansatz. Das hilft auch, den Kohlenstoffdioxid-Ausstoß massiv zu senken. Zu diesem Ergebnis kommt eine Studie der dänischen Sektion der Umweltschutzorganisation World Wide Fund For Nature (WWF) und des dänischen Biotech-Unternehmens Novozymes. Ihr Fazit: Würde die industrielle Biotechnologie in vollem Maße ausgenutzt, ließen sich bis 2030 zwischen einer und 2,5 Milliarden Tonnen Kohlenstoffdioxid einsparen. Und das pro Jahr.

Die Natur bietet ein riesiges Potenzial für die chemische Industrie. Doch bislang wird es noch zu wenig genutzt. In Deutschland liegt der Anteil von nachwachsenden Rohstoffen in der chemischen Industrie bei nur etwa 13 Prozent. Soll sich die Abhängigkeit vom Erdöl verringern, muss die Wirtschaft stärker auf natürliche Ressourcen setzen. Voraussetzung dafür ist aber, dass die Verfahren auf Biomassebasis schneller vom Labor in die Industrie übertragen werden.

| Fraunhofer Magazin
Weitere Informationen:
http://www.fraunhofer.de/de/publikationen/fraunhofer-magazin/2012/weitervorn_2-2012_Inhalt/weiter-vorn_2-2012_08.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?
03.07.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Wirkstoffe aus Kieler Meeresalgen als Mittel gegen Infektionen und Hautkrebs entdeckt
03.07.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics