Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie: Effiziente Prozesse in winzig kleinen Anlagen

26.01.2016

Die Deutsche Forschungsgemeinschaft (DFG) richtet am Karlsruher Institut für Technologie (KIT) und der Universität Freiburg eine neue Forschergruppe ein: „Erfassung und Steuerung dynamischer lokaler Prozesszustände in Mikroreaktoren mittels neuer In-situ-Sensorik“, kurz ProMiSe. Darin entwickeln Wissenschaftler elektronische und optische Mikrosensoren und Messtechniken, um chemische und physikalische Prozesse in mikrostrukturierten verfahrenstechnischen Anlagen besser zu verstehen sowie kostengünstiger und energieeffizienter zu gestalten.

Das KIT koordiniert die neue Forschergruppe (FOR 2383 ProMiSe); als Sprecher fungiert Professor Roland Dittmeyer, Leiter des Instituts für Mikroverfahrenstechnik (IMVT) des KIT. Über die ersten drei Jahre fördert die DFG die Forschergruppe mit 2,7 Millionen Euro.


Kanäle oder andere Strömungsstrukturen im Inneren von kompakten Mikroreaktoren optimieren Durchmischung von Chemikalien und Wärmeabfuhr bei Prozessen.

(Foto: IMVT/KIT)


Mithilfe von elektronischen, elektrochemischen und optischen Mikrosensoren werden Prozessparameter in Echtzeit erfasst.

(Bild: Uni Freiburg)

ProMiSe umfasst vier standort- und fachübergreifende Teilprojekte, in denen Wissenschaftler die Untersuchung und gezielte Steuerung von Prozessen in Mikroreaktoren an vier beispielhaften Anwendungen untersuchen: an der Verdampfung von Flüssigkeiten, die für die Abwärmenutzung oder die Kühlung von Hochleistungsbauteilen in der Automobil- und Elektronikindustrie relevant sind, an der heterogen katalysierten Direktsynthese von Wasserstoffperoxid als Schlüsselsubstanz einer „grüneren“ Chemie, an der photochemischen Synthese von Arzneimittelwirkstoffen und derem photochemischen Abbau bei der Nanofiltration von Wasser sowie an der hydrothermalen Synthese funktionalisierter metalloxidischer Nanopartikel.

Mikroreaktoren sind modular aufgebaute, kompakte verfahrenstechnische Anlagen. Die Stoffe werden durch Mikrokanäle mit winzigen Abmessungen geführt, die teilweise wenige Mikrometer (millionstel Meter) betragen . Dank der dadurch im Verhältnis zum Reaktionsvolumen besonders großen Oberfläche zeichnen sich Mikroreaktoren durch eine verbesserte Wärmeübertragung aus.

Die kleinen Abmessungen der Mikrokanäle führen auch zu einer schnelleren Durchmischung. Überdies macht der Einsatz von Mikroreaktoren Prozesse sicherer, besonders bei extrem toxischen Stoffen oder zu Explosionen neigenden Reaktionen, da kleinere Einsatzstoffmengen in verteilten Produktionsläufen vor Ort verwendet werden können.

Bis jetzt sind die lokalen Prozesse in solchen Mikrostrukturapparaten noch nicht vollständig verstanden. Dies gilt vor allem für mehrphasige reaktive Strömungen, an denen zwei oder mehrere Phasen bzw. Fluide (Flüssigkeiten oder Gase) beteiligt sind.

„Bessere, das heißt orts- und zeitaufgelöste Daten zu chemischen Reaktionen, Stofftransportvorgängen und Phasenübergängen in Verbindung mit einer durchgängigen Modellierung ermöglichen es, Prozesse gezielt effizienter zu gestalten“, erklärt Professor Roland Dittmeyer vom KIT, Sprecher der DFG-Gruppe ProMiSe. „Dadurch lassen sich der Verbrauch an Einsatzstoffen und Energie sowie die erzeugten Abfallmengen minimieren, was zu kostengünstigeren und umweltfreundlicheren Prozessen führt.“

Mithilfe von elektronischen, elektrochemischen und optischen Mikrosensoren zur Echtzeit-Erfassung der Prozessparameter, die in den schwer zugänglichen Mikrokanälen integriert werden, wollen die Forscher nun Daten einer ganz neuen Qualität gewinnen und als Grundlage für ein erweitertes Prozessverständnis nutzen.

In der Forschergruppe ProMiSe wirken am KIT neben dem IMVT (Professor Roland Dittmeyer und PD Dr. Jürgen J. Brandner) auch das Institut für Technische Thermodynamik und Kältetechnik (ITTK – Professor Michael Türk) sowie das Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK – Professor Thomas Hanemann) mit. An der Universität Freiburg sind vom Institut für Mikrosystemtechnik (IMTEK) die Lehrstühle für Konstruktion von Mikrosystemen (Professor Peter Woias als stellvertretender Sprecher der Forschergruppe, Dr. Keith Cobry), für Sensoren (Professor Gerald Urban) und für Simulation (Dr. Andreas Greiner) sowie die Gisela-und-Erwin-Sick-Professur für Mikrooptik (Professor Hans Zappe) beteiligt. Als assoziierte Arbeitsgruppen sind am KIT zudem das Institut für Organische Chemie (IOC – Professor Stefan Bräse, Dr. Nicole Jung) und das Institut für Funktionelle Grenzflächen (IFG – Professorin Andrea Schäfer) in ProMiSe eingebunden.

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemische Reaktionen per Licht antreiben
25.04.2019 | Johannes Gutenberg-Universität Mainz

nachricht Kraftwerk ohne DNA
25.04.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Volle Fahrt voraus für SmartEEs auf der Automotive Interiors Expo 2019

Flexible, organische und gedruckte Elektronik erobert den Alltag. Die Wachstumsprognosen verheißen wachsende Märkte und Chancen für die Industrie. In Europa beschäftigen sich Top-Einrichtungen und Unternehmen mit der Forschung und Weiterentwicklung dieser Technologien für die Märkte und Anwendungen von Morgen. Der Zugang seitens der KMUs ist dennoch schwer. Das europäische Projekt SmartEEs - Smart Emerging Electronics Servicing arbeitet an der Etablierung eines europäischen Innovationsnetzwerks, das sowohl den Zugang zu Kompetenzen als auch die Unterstützung der Unternehmen bei der Übernahme von Innovationen und das Voranschreiten bis zur Kommerzialisierung unterstützt.

Sie umgibt uns und begleitet uns fast unbewusst durch den Alltag – gedruckte Elektronik. Sie beginnt bei smarten Labels oder RFID-Tags in der Kleidung,...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie sieht das Essen der Zukunft aus?

25.04.2019 | Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

UKP-Laser erobern Makrobearbeitung

25.04.2019 | Verfahrenstechnologie

Kraftwerk ohne DNA

25.04.2019 | Biowissenschaften Chemie

Chemische Reaktionen per Licht antreiben

25.04.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics