Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Buntbarsche sehen Infrarot

25.10.2012
Biologen der Universität Bonn haben entdeckt, dass Buntbarsche auch im nahen Infrarotbereich sehen können - bislang hielten Wissenschaftler dies für ausgeschlossen.

Das Infrarotsehen hilft den Fischen offenbar, in flachen afrikanischen Flüssen zu jagen. Die Ergebnisse werden in der renommierten Zeitschrift „Naturwissenschaften“ veröffentlicht und sind bereits jetzt online abrufbar.


Buntbarsche können mit ihren Augen Infrarotlicht wahrnehmen. (c) Foto: Denis Meuthen/Uni Bonn


Buntbarschmännchen beim Jagen eines Bachflohkrebses. (c) Foto: Denis Meuthen/Uni Bonn

Ein Forscherteam in der Arbeitsgruppe von Prof. Dr. T. C. M. Bakker vom Institut für Evolutionsbiologie und Ökologie der Universität Bonn erforscht schon seit vielen Jahren die Biologie von Smaragdprachtbarschen (Pelvicachromis taeniatus).

Forscher führten ein Futterwahlexperiment durch

Die Sehfähigkeiten des Fisches im Infrarotbereich wurden von den Wissenschaftlern mit einem klassischen Futterwahlexperiment festgestellt. Die Buntbarsche ernähren sich auch von kleinen Krebsen wie Bachflohkrebsen. Diese Beutetiere reflektieren Strahlung im nahen Infrarotbereich. Diesen Umstand nutzten die Forscher, um die Infrarotwahrnehmung der Fische zu erkunden. In einem lichtdichten Raum wurde unter Infrarotlampen ein Wahlversuch aufgebaut. Vor einem Wasserbecken, in dem sich die Fische aufhielten, wurden den Buntbarschen in zwei getrennten Kammern Bachflohkrebse angeboten. Eine der Kammern mit der Beute war mit einer Filterfolie beklebt, die keine Infrarotstrahlung durchließ. Auf die andere Kammer war hingegen eine Folie aufgebracht, die ausschließlich von Infrarotlicht durchdrungen werden kann. „Die Buntbarsche sahen deshalb nur in einer Kammer die Bachflohkrebse im nahen Infrarotbereich“, erläutert Dr. Baldauf, einer der an der Studie beteiligten Forscher.

Physiologen hielten Sehen im nahen Infrarot für unwahrscheinlich

Im Experiment zeigte sich, dass sich die Buntbarsche viel häufiger und länger vor der Kammer mit den Bachflohkrebsen aufhielten, die die nahe Infrarotstrahlung durchließ. „Die Fische erkennen die Beute also anhand der Infrarotstrahlung“, berichtet der Biologe der Universität Bonn. „Dieser überraschende Befund ist nun erstmals gelungen. Physiologen hielten bislang das Rauschen im nahen Infrarotbereich für zu groß, um mit den Augen der Tiere ein Bild zu erzeugen.“ Wie das Experiment zeigt, können die Buntbarsche Reize im Wellenlängenbereich oberhalb von 780 Nanometern wahrnehmen. Zwar ist bekannt, dass etwa auch Schlangen Infrarot wahrnehmen, jedoch im deutlich längeren Wellenlängenbereich von rund 2000 Nanometer. „Dies geschieht allerdings nicht mit den Augen, sondern mit einem speziellen wärmeempfindlichen Grubenorgan“, sagt Dr. Baldauf. Menschen können Infrarotstrahlung hingegen nicht mit ihren Sehzellen wahrnehmen.

Infrarotsehen ist im natürlichen Habitat sinnvoll

Der Vorteil des Infrarotsehens der Buntbarsche liegt auf der Hand, wenn man das natürliche Habitat betrachtet. Die flachen Flüsse Westafrikas weisen relativ viel Infrarotstrahlung auf. „Gerade deshalb ist es naheliegend, dass dieser Sinn zur Beutesuche angewendet wird“, erläutert der Biologe der Universität Bonn. „Es ist ein klarer Selektionsvorteil, wenn man zusätzliche Signale wahrnehmen kann, die andere nicht sehen.“ Es sei nicht unwahrscheinlich, dass auch andere Tiere die nahe Infrarotstrahlung nutzen, um zu jagen oder sich zu orientieren – etwa Vögel. Die Forscher der Universität Bonn wollen nun genauer untersuchen, inwieweit die Infrarotstrahlung für die Buntbarsche auch in anderen Kontexten, wie beispielsweise der Kommunikation zwischen Artgenossen, von Nutzen ist.

Infrarotstrahlung in der Partnerwahl?

Bei Farbmessungen an den Buntbarschen stellten die Forscher fest, dass die Tiere an bestimmten Stellen ihres Körpers das Licht im nahen Infrarotbereich – der Wärmestrahlung – reflektierten. „Wir registrierten, dass die Weibchen am Bauch und die Männchen an den Flossen Infrarotstrahlung reflektieren“, sagt Dr. Baldauf. Die Bauchfärbung ist für die Fortpflanzung und die Flossen sind für das Imponierverhalten in Kampfsituationen dieser Fische wichtig. „Daher könnte Infrarotstrahlung während der Partnerwahl eine wichtige Rolle spielen“, meint der Biologe. „Und das möchten wir in weiterführenden Experimenten untersuchen.“

Publikation: Visual prey detection by near-infrared cues in a fish, „Naturwissenschaften“, DOI: 10.1007/s00114-012-0980-7

Kontakt:

Dr. Sebastian A. Baldauf
Institut für Evolutionsbiologie und Ökologie
Tel. 0228/735749
E-Mail: sbaldauf@evolution.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Hefe-Spezies in Braunschweig entdeckt
12.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Urbane Gärten: Wie Agrarschädlinge von Städten profitieren
12.12.2019 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Die „Luft“ im Ozean wird dünner - Sauerstoffgehalte im Meerwasser gehen weiter zurück

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics