Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brücken bauen mit Wassermolekülen

25.06.2018

Wassermoleküle können komplizierte brückenartige Strukturen bilden, wenn sie sich an Oberflächen anlagern. Vermutet hatte man das bereits, einem Team der TU Wien gelang nun der Beweis.

Wasser ist eine erstaunlich komplizierte Flüssigkeit. Wie sich einzelne Wassermoleküle an unterschiedlichen Materialien anlagern ist das für viele wichtige Vorgänge entscheidend – etwa für Korrosion und Verwitterungseffekte oder für das optimale Funktionieren von Katalysatoren.


Wassermoleküle bilden komplexe Strukturen auf der Eisenoxid-Oberfläche

TU Wien

Einem Team der TU Wien gelang es nun, die Struktur von Wassermolekülen auf Eisenoxid-Oberflächen genau zu entschlüsseln. Wie sich dabei zeigte, können sich die Wassermoleküle auf der Oberfläche zu komplizierten, brückenartigen Strukturen zusammenfinden. Diese Strukturen spielen für chemische Reaktionen an der Oberfläche eine wichtige Rolle.

Wasser ist anders

„Das Besondere an Wassermolekülen ist, dass sie sogenannte Wasserstoff-Brückenbindungen ausbilden können“ erklärt Prof. Gareth Parkinson vom Institut für Angewandte Physik der TU Wien. „Die elektrische Ladung ist nicht gleichmäßig verteilt.

Das Sauerstoff-Atom ist ein bisschen negativ geladen, die Wasserstoffatome ein bisschen positiv.“ Dadurch können sich Bindungen zwischen Wassermolekülen bilden - die berühmten Wasserstoff-Brückenbindungen - oder es können auch Bindungen zwischen einem Wassermolekül und anderen Molekülen entstehen.

Das hat weitreichende Auswirkungen: So sind die Wasserstoff-Brückenbindungen etwa dafür verantwortlich, dass Wasser erst bei einer recht hohen Temperatur von 100°C kocht, und auch für die Struktur von Proteinen spielen Wasserstoff-Brückenbindungen eine wichtige Rolle.

Sogar für völlig unwissenschaftliche Behauptungen müssen diese Bindungen immer wieder herhalten – so sollen sie angeblich für Wassercluster verantwortlich sein, durch die sich im Wasser mysteriöse „Information“ speichern lassen soll.

Das ist physikalisch nicht möglich, weil die Wasserstoff-Brückenbindungen sehr schwach sind, und in flüssigem Wasser innerhalb von Sekundenbruchteilen wieder zerstört werden. Doch wenn sich Wassermoleküle an Oberflächen anlagern, kann die Sache ganz anders aussehen: Bei niedrigen Temperaturen entstehen erstaunlich komplexe, stabile Strukturen.

An den Grenzen des Möglichen

„Indirekte Hinweise auf eine solche Strukturbildung gab es bereits“, sagt Ulrike Diebold (TU Wien). „Aber um die Struktur des Wassers auf Eisenoxid-Oberflächen wirklich sichtbar zu machen, mussten wir die neuesten und besten Messmethoden noch weiter verbessern und ganz an die Grenzen des Möglichen gehen.“

Bei niedrigen Temperaturen wird zunächst im Vakuum ein Strahl von Wassermolekülen auf die Oberfläche geblasen. Dann wird wird die Oberfläche vorsichtig erwärmt, bis zu einer Temperatur von ungefähr -30°C. Dabei werden die Wasser-Strukturen nach und nach aufgebrochen. Die Wassermoleküle verlassen einzeln die Oberfläche und werden an einem Detektor aufgefangen.

„Wir können genau messen, wie viele Wassermoleküle bei welcher Temperatur die Oberfläche verlassen. Daraus kann man auf die Bindungsenergie schließen – und das sagt uns, um welche Molekül-Strukturen es sich gehandelt hat“, erklärt Gareth Parkinson.

Gleichzeitig wurden mit Hilfe eines speziellen vibrationsgedämpften Hochleistungsmikroskops hochauflösende Bilder von der Oberfläche erstellt, auf denen man die Wasser-Strukturen erkennen kann, und zusätzlich wurden aufwändige Computersimulationen entwickelt, um die geometrische Anordnung der Wassermoleküle auf Quanten-Ebene zu erklären.

„Wir haben somit drei Werkzeuge zur Verfügung, um die Wasser-Strukturen zu untersuchen, und das ist auch nötig, um ein zuverlässiges Resultat zu erhalten“, sagt Gareth Parkinson. „Alle drei Analysen stimmen bestens überein, daher können wir mit großer Sicherheit sagen, dass wir die Strukturbildung von Wasser auf Eisenoxid-Oberflächen nun verstehen.“

Wie sich zeigt bilden sich mehrere Strukturen: Kaum ein Wassermolekül sitzt alleine auf der Oberfläche, man findet Paare und Dreiergruppen von Wassermolekülen, und zusätzlich treten komplexere Strukturen aus 6 oder 8 Molekülen auf, die sich wie elliptisch gekrümmte Brückenbögen über die Eisenoxid-Oberfläche spannen.

„Unser Hauptziel war, die Analysemethoden so weiterzuentwickeln, dass solche Molekül-Strukturen eindeutig nachweisbar werden – und das ist uns gelungen“, sagt Ulrike Diebold. „Die Methode, die wir hier für Eisenoxid eingesetzt haben, lässt sich genauso auch auf andere Materialien übertragen.“

Originialpublikation: Water agglomerates on Fe3O4(001), Meier et al., PNAS (2018). DOI: 10.1073/pnas.1801661115 http://www.pnas.org/content/115/25/E5642

Kontakt:
Gareth Parkinson, PhD
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13473
gareth.parkinson@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unschuldig und stark oxidierend
04.06.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Atherosklerose - Wie RNA-Schnipsel die Gefäße schützen
04.06.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleines Protein, große Wirkung

In Meningokokken spielt das unscheinbare Protein ProQ eine tragende Rolle. Zusammen mit RNA-Molekülen reguliert es Prozesse, die für die krankmachenden Eigenschaften der Bakterien von Bedeutung sind.

Meningokokken sind Bakterien, die lebensbedrohliche Hirnhautentzündungen und Sepsis auslösen können. Diese Krankheitserreger besitzen ein sehr kleines Protein,...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Alternativer Zement - Rezeptur für Öko-Beton

04.06.2020 | Architektur Bauwesen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungsnachrichten

Unschuldig und stark oxidierend

04.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics