Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremse im Kopf: Berliner Forschern gelingen neue Einsichten in die Arbeitsweise des Gehirns

19.09.2013
Wissenschaftlern der Charité – Universitätsmedizin Berlin und des DZNE sind neue Einblicke in die Funktionsweise einer Hirnregion gelungen, die der räumlichen Orientierung dient, bei einer Alzheimer-Erkrankung jedoch geschädigt ist.

Im sogenannten Entorhinalen Cortex untersuchten sie, wie Nervensignale innerhalb dieser Region unterdrückt werden. Diese neuronale Hemmung trägt nach Einschätzung der Forscher maßgeblich dazu bei, dass Nervenzellen ihre Aktivität aufeinander abstimmen können. Die Ergebnisse der Studie sind in der aktuellen Ausgabe der Fachzeitschrift Neuron veröffentlicht.


Nervengewebe des Entorhinalen Cortex unter dem Mikroskop. Die hellen Flecken sind die Zellkörper von Nervenzellen (Neuronen). Quelle: DZNE/Charité – Universitätsmedizin Berlin, Beed/Schmitz

Der „Entorhinale Cortex“ ist ein Bindeglied zwischen dem Gedächtniszentrum, dem sogenannten Hippocampus und anderen Bereichen des Gehirns. Dabei ist er jedoch mehr als eine Schnittstelle, die Nervenimpulse einfach nur übermittelt. Dem Entorhinalen Cortex wird auch eine eigenständige Rolle für Lern- und Gedächtnisprozesse zugeschrieben, insbesondere für das räumliche Gedächtnis. „Man weiß noch wenig darüber, wie dies geschieht“, sagt Prof. Dietmar Schmitz, Forscher am Exzellenzcluster Neurocure der Charité und Standortsprecher des DZNE in Berlin. „Deswegen untersuchen wir im Tiermodell, wie die Nervenzellen innerhalb des Entorhinalen Cortex miteinander verschaltet sind.“

Im Gehirn wandern Signale als elektrische Impulse von Nervenzelle zu Nervenzelle. In der Regel werden sie nicht bloß weitergeleitet. Die Arbeitsweise des Gehirns beruht darauf, dass Nervenimpulse auf nachgeschaltete Zellen in manchen Situationen erregend, in anderen Fällen unterdrückend wirken. Die korrekte Balance zwischen Hemmung und Erregung ist entscheidend für alle Hirnprozesse. „Bisherige Untersuchungen haben sich vorwiegend auf die Signalerregung innerhalb des Entorhinalen Cortex konzentriert. Wir haben uns daher die Hemmung angeschaut und dabei einen Gradienten innerhalb des Entorhinalen Cortex festgestellt“, erläutert Dr. Prateep Beed, Erstautor der Studie. „Das bedeutet, dass Nervensignale nicht gleichmäßig gehemmt werden. Die Blockade der Nervensignale ist in manchen Bereichen des Entorhinalen Cortex schwächer, in anderen stärker ausgeprägt. Die Hemmung hat sozusagen ein räumliches Profil.“

Wenn das Gehirn beschäftigt ist, geschieht es häufig, dass Nervenzellen ihre Arbeitsweise aufeinander abstimmen und im Gleichtakt aktiv sind. In einem Elektroenzephalogramm (EEG) – ein Verfahren, das die elektrische Aktivität des Gehirns erfasst – äußert sich der Gleichtakt der Nervenzellen als periodisches Muster. „Es ist eine offene Frage, wie sich Nervenzellen synchronisieren und wie sie dabei solche Rhythmen hervorbringen“, sagt Beed. Unklar ist auch, ob die Oszillationen nur eine Begleiterscheinung der gemeinsamen Nervenaktivität sind oder ob sie darüber hinaus eine Funktion haben. „Erwiesen ist allerdings, dass neuronale Oszillationen gemeinsam mit Lernprozessen und sogar im Schlaf auftreten. Sie sind ein typisches Merkmal der Hirnaktivität“, meint der Wissenschaftler. „Die ungleichmäßige Hemmung von Nervensignalen, die wir jetzt nachweisen konnten, spielen nach unserer Auffassung für den Gleichtakt der Nervenzellen und die damit verbundenen Oszillationen eine wichtige Rolle.“

Im Fall von Alzheimer zählt der Entorhinale Cortex zu den Hirnregionen, die als erste von der Krankheit betroffen sind. „In jüngster Zeit häufen sich die Studien über diese Hirnstruktur. Dort findet man bereits in einem frühen Stadium von Alzheimer jene Protein-Ablagerungen, die für eine Erkrankung typisch sind“, erläutert Teamleiter Schmitz. „Bekannt ist auch, dass Alzheimer-Patienten ein auffälliges EEG aufweisen. Durch unsere Studie verstehen wir nun besser, wie die Nervenzellen im Entorhinalen Cortex arbeiten und wie es in dieser Region zu Störungen der elektrischen Aktivität kommen kann.“

Originalveröffentlichung:
Inhibitory gradient along the dorso-ventral axis in the medial entorhinal cortex Prateep Beed, Anja Gundlfinger et al. Neuron. DOI: 10.1016/j.neuron.2013.06.038
Kontakt
Prof. Dietmar Schmitz
Charité – Universitätsmedizin Berlin
DZNE, Berlin
030 / 450-539054
dietmar.schmitz(at)dzne.de
Dr. Dirk Förger
Leiter Presse- und Öffentlichkeitsarbeit
DZNE
0228 / 43302-260
presse(at)dzne.de

Daniel Bayer | idw
Weitere Informationen:
http://www.dzne.de/ueber-uns/presse/meldungen/2013/pressemitteilung-nr-28.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum
19.07.2018 | Stiftung Tierärztliche Hochschule Hannover

nachricht Infrarotsensor als neue Methode für die Wirkstoffentwicklung
19.07.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics