Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sie ist der Boss: Bei Blütenpflanzen steuert die Eizelle die Befruchtung - Publikation in „Science“

26.11.2012
Forscher der Universität Regensburg haben in Kooperation mit Wissenschaftlern der ETH Zürich einen fundamentalen biologischen Prozess entschlüsselt:
Bei der Untersuchung der Modell-Blütenpflanze Arabidopsis thaliana (Acker-Schmalwand) entdeckte das Team um Dr. Stefanie Sprunck und Prof. Dr. Thomas Dresselhaus vom Institut für Botanik und Zellbiologie eine kleine Proteinfamilie in den Eizellen der Pflanze, die den Vorgang der doppelten Befruchtung steuert und kontrolliert. Die Ergebnisse wurden am vergangenen Freitag in der renommierten Fachzeitschrift „Science“ veröffentlicht (DOI: 10.1126/science.1223944).

Mit der sogenannten doppelten Befruchtung haben Blütenpflanzen eine besondere Form der sexuellen Fortpflanzung entwickelt. Dabei wächst ein Pollenschlauch mit zwei Spermazellen an der Spitze durch die verschiedenen Gewebe der weiblichen Blüte. Ziel ist das Zentrum des Fruchtknotens mit den Samenanlagen, wo sich in jeder Samenanlage zwei unterschiedliche weibliche Gameten befinden.

Blüten der Arabidopsis thaliana
Foto: Dr. Stefanie Sprunck


Das Bild zeigt zwei Spermazellen (rot fluoreszente Kerne der Spermazellen) in einer mutanten Samenanlage: Hier wurden die Gene für die EC1-Proteine ausgeschaltet und als Folge können die beiden Spermazellen nicht fusionieren. Sie bleiben nach Ankunft in einer der beiden Synergidenzellen (= flankierende Zellen, die den Pollenschlauch anlocken und zum Platzen bringen) liegen, da sie nicht durch die Eizelle aktiviert werden können. Foto: Dr. Stefanie Sprunck

Eine der Spermazellen fusioniert mit der Eizelle und es entsteht eine Zygote, die sich zum Embryo entwickelt. Die zweite Spermazelle fusioniert mit der Zentralzelle und es bildet sich das Endosperm – ein Nährgewebe, das den Embryo umgibt. Bei Getreidearten entwickelt sich hieraus der Mehlkörper, unser wichtigstes Grundnahrungsmittel.

Damit sich ein Same entwickeln kann, müssen beide Befruchtungsprozesse erfolgreich stattfinden. Obwohl es sich um einen fundamentalen biologischen Prozess handelt, war bisher nur wenig über die der doppelten Befruchtung zugrundeliegenden molekularen Mechanismen bekannt. Die Regensburger Forscher konnten jetzt zeigen, dass eine kleine Proteinfamilie der Eizelle, EGG CELL1 (EC1) genannt, maßgeblich am Prozess der doppelten Befruchtung beteiligt ist. Bei Ankunft der beiden Spermazellen werden die EC1-Signalproteine von der Eizelle ausgeschüttet. Sie wirken auf die Spermazellen ein und sorgen dafür, dass die Zelloberflächen der Spermien zur richtigen Zeit und am richtigen Ort für eine Fusion mit den weiblichen Gameten vorbereitet werden. Fehlen einer Eizelle die EC1-Proteine, können die Spermazellen weder mit der Eizelle noch mit der Zentralzelle fusionieren und eine Befruchtung findet nicht statt.

Es ist anzunehmen, dass sich die Beobachtungen der Regensburger Forscher auf alle anderen Blütenpflanzen übertragen und langfristig sogar kontrolliert beeinflussen lassen. Denn die Gene für EC1-Proteine sind bereits in den ursprünglichsten Blütenpflanzen nachweisbar; so zum Beispiel auch im Genom des immergrünen Strauches Amborella trichopoda, der als urtümlichster Vertreter der Blütenpflanzen angesehen wird. EC1-Proteine fehlen dagegen bei Pflanzen, die keine doppelte Befruchtung aufweisen.

Zur Originalveröffentlichung:
http://www.sciencemag.org/content/338/6110/1093

Ansprechpartnerin für Medienvertreter:
Dr. Stefanie Sprunck
Universität Regensburg
Institut für Botanik und Zellbiologie
Tel.: 0941 943-3005
Stefanie.Sprunck@biologie.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Synthese gegen die Stoppuhr: Neuartiges Radiopharmakon zur Diagnostik tumorrelevanter Transportproteine entwickelt
06.04.2020 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Winzige Meeresbewohner als Schlüssel für globale Kreisläufe
06.04.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics