Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blutplasma ist dicker als Wasser

18.02.2013
Gemeinsame Pressemitteilung der Universität des Saarlandes und der University of Pennsylvania

Einem deutsch-amerikanischen Forscherteam ist der Nachweis gelungen, dass das Blutplasma mehr zu den Fließeigenschaften von Blut als Ganzem beiträgt, als bisher angenommen. Damit widerlegen die Arbeitsgruppen um die Professoren Christian Wagner und Paulo E. Arratia die seit Jahrzehnten vorherrschende Meinung, wonach Plasma sich wie Wasser verhält. Vielmehr ist Plasma elastisch, zähflüssig und verändert wie Ketchup je nach angelegtem Druck sein Fließverhalten, wird also dünn- oder zähflüssiger.

Die Erkenntnisse sind bedeutsam, um die Vorgänge bei Thrombosen, Aneurysmen oder Gefäßablagerungen besser zu verstehen. Ihre Ergebnisse veröffentlichen die Wissenschaftler in den Physical Review Letters. Die American Physical Society setzt die Arbeit auf ihrer Physics-Website auf die „Focus“-Liste wichtiger Physik-Meldungen: http://physics.aps.org

Blut fließt anders als Wasser. Das weiß jeder, der sich schon einmal geschnitten hat: Blut strömt zäh, dickflüssig, sprunghaft. Der Vergleich mit Ketchup wird darum nicht nur beim Film gezogen. Die Experten sprechen bei Blut von einer „Schubspannungs-Flüssigkeit“ oder einer „nicht-Newtonschen“ Flüssigkeit – zu deren Paradebeispielen eben auch Ketchup zählt. Die Fachbegriffe stehen für Flüssigkeiten, deren Art zu fließen sich unter bestimmten Voraussetzungen verändert: Manche werden mehr, andere weniger zähflüssig. Blut wird – wie Ketchup – bei höherem Druck flüssiger. Hierdurch kann Blut auch in kleinsten Äderchen fließen. Wasser fließt demgegenüber immer gleich.

Bislang wurde angenommen, dass diese besonderen Fließeigenschaften des Blutes vor allem von den roten Blutkörperchen herrühren, die in hoher Konzentration von etwa 45 Prozent darin vorkommen. Das Blutplasma wurde eher als Schauplatz des Geschehens und nicht als aktiver Mitspieler angesehen. Seit Jahrzehnten ging die Forschung davon aus, dass Blutplasma wie Wasser fließt. Immerhin besteht diese Flüssigkeit, in der die Blutzellen schwimmen, tatsächlich zu rund 92 Prozent aus Wasser. Jetzt belegen Ergebnisse von Forschern der Saar-Universität und der University of Pennsylvania, dass auch das Plasma „ein ganz besonderer Saft“ ist und den Blutfluss entscheidend beeinflusst: Ihre Forschungen zeigen, dass Blutplasma selbst eine nicht-Newtonsche Flüssigkeit ist.

Das komplexe Fließ- und Strömungsverhalten des Blutplasmas könnte nach den neuen Erkenntnissen eine entscheidende Rolle bei Ablagerungen an Gefäßwänden, Aneurysmen oder Thrombosen spielen. Die Forschungsergebnisse können daher helfen, solche pathologischen Vorgänge am Computer zu simulieren.

Die Forschergruppe des Experimentalphysikers Christian Wagner und des Ingenieurwissenschaftlers Paulo E. Arratia haben das Fließ- und Strömungsverhalten des Blutplasmas in Experimenten nachgewiesen. An der Saar-Universität wurden so genannte Tropfenexperimente durchgeführt. Blutplasma wurde hierzu in speziellen Versuchsaufbauten zum Tropfen gebracht beziehungsweise zwischen zwei Platten platziert und diese auseinandergezogen. Die Forscher analysierten die Vorgänge unter Einsatz von Hochgeschwindigkeitskameras mit hochauflösenden Mikroskop-Objektiven. „Bei unseren Versuchen haben wir eine Fadenbildung, also eine Dehnungsviskosität des Blutplasmas festgestellt, die bei Wasser nicht vorkommen kann“, erklärt Professor Wagner. Das Plasma zeigt „viskoelastische“ Eigenschaften, das heißt, es verformt sich elastisch und ist zähflüssig und bildet dabei für nicht-Newtonsche Flüssigkeiten typische Fäden.

Mit Mitteln der Mikrofluidik wurde an der University of Pennsylvania gearbeitet: Prof. Arratia und sein Team entwickelten ein Modell eines Mikrogefäßsystems und untersuchten das Fließverhalten des Plasmas. Ihre Messungen ergaben, dass Blutplasma ein anderes Fließverhalten als Wasser zeigt und darüber hinaus einen deutlich größeren Strömungswiderstand vorweisen kann. „Diese Erkenntnisse wurden auch möglich durch neu entwickelte mikrofluidische Messgeräte, die empfindlich genug sind, um die feinen Unterschiede im Fließverhalten von nicht-Newtonschen Flüssigkeiten zu messen“, erläutert Professor Arratia.

In Untersuchungen des Strömungsverhaltens des Blutplasmas konnte Professor Wagner mit seinem Team außerdem nachweisen, dass das Plasma Verwirbelungen im Blut beeinflusst. Diese könnten zum Beispiel Ablagerungen und in deren Folge etwa Thrombosen verursachen. In einem Versuch ließen die Forscher Plasma durch eine Engstelle fließen wie bei einer Gefäßverengung oder einem „Stent“, das ist ein medizinisches Implantat, das zur Stütze in Blutgefäße eingebracht wird: Sie stellten Verwirbelungen am Ende der Verengung, aber auch am Beginn der Engstelle fest, die durch die viskoelastischen Eigenschaften des Blutplasmas ausgelöst werden.

Die Deutsche Forschungsgemeinschaft förderte die Forschung im Graduiertenkolleg „Strukturbildung und Transport in komplexen Systemen“ der Saar-Universität. Die US National Science Foundation förderte die Forschung an der University of Pennsylvania (CBET- 0932449).

Originalpublikation:
M. Brust, C. Schaefer, R. Doerr, L. Pan, M. Garcia, P. E. Arratia, and C. Wagner (2013):
"Rheology of human blood plasma: Viscoelastic versus Newtonian behavior",
Phys. Rev. Lett., 110, 078305 (2013)
DOI: 10.1103/PhysRevLett.110.078305
http://link.aps.org/doi/10.1103/PhysRevLett.110.078305
Focus-Meldung auf der Physics-Website (http://physics.aps.org/):
http://physics.aps.org/articles/v6/18 (mit Video)
Kontakt:
Professor Dr. Christian Wagner
Fachrichtung Experimentalphysik, Universität des Saarlandes
Tel.: 0049 (0)681 302-3003 oder -2416; E-Mail: c.wagner@mx.uni-saarland.de
http://agwagner.physik.uni-saarland.de/
Professor Paulo E. Arratia
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania
Tel.: 001 (215) 746-2174; E-mail: parratia@seas.upenn.edu
www.seas.upenn.edu/~parratia
Pressefotos für den kostenlosen Gebrauch finden Sie unter www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung). Interviewwünsche bitte an die Pressestelle (0681/302-2601) richten.

Friederike Meyer zu Tittingdorf | idw
Weitere Informationen:
http://physics.aps.org/
http://www.uni-saarland.de/pressefotos

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Magische kolloidale Cluster
11.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kupferverbindung als Recheneinheit in Quantencomputern
11.12.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics