Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bluteiweiss schützt vor neurologischen Schäden nach Hirnblutung

21.10.2019

Überleben Betroffene eine Hirnblutung, können zeitlich verzögert schwere Hirnschädigungen auftreten. Verantwortlich dafür ist freies Hämoglobin, das von den roten Blutkörperchen stammt und Nervenzellen schädigt. Forschende der Universität Zürich und des Universitätsspitals Zürich haben nun ein körpereigenes Schutzprotein namens Haptoglobin entdeckt, das dies verhindert.

Blutungen in den engen Raum zwischen der inneren und mittleren Hirnhaut sind für betroffene Patientinnen und Patienten lebensbedrohlich. Verursacht wird diese Art der Hirnblutung meistens durch kleine Gefässausbuchtungen der grossen Arterien an der Hirnbasis, die ohne Vorwarnung platzen können. Ein Drittel der häufig jungen Patienten verstirbt durch den massiven Druckanstieg im Schädelinneren.


Das Versuchstier rechts wurde mit Haptoglobin behandelt. Das Eindringen von rot gefärbtem Hämoglobin (schwarzer Bereich, Mitte) in das Hirngewebe (blau) ist blockiert.

Dominik Schaer, UZH/USZ

«Auch wenn es uns gelingt, die Blutung zu stoppen und den Patienten zu stabilisieren, können in den ersten zwei Wochen nach der Blutung verzögert Hirnschäden auftreten. Diese führen oft zu schweren Behinderungen oder verlaufen gar tödlich», erklärt Luca Regli, Direktor der Klinik für Neurochirurgie des Universitätsspitals Zürich (USZ).

Freies Hämoglobin im Hirnwasser schädigt Nervenzellen

Trotz enormer Forschungsanstrengungen kann diese schwere Folge von Blutungen in den Hirnwasserraum bisher nicht verhindert werden. Ein interdisziplinäres Team von Forschenden der Universität Zürich (UZH), des USZ und des Tierspitals Zürich hat nun eine aussichtsreiche Strategie entdeckt: Haptoglobin, ein körpereigenes Schutzeiweiss im Blut, bindet das ins Hirnwasser freigesetzte Hämoglobin, bevor dieses seine schädigende Wirkung entfalten kann.

«Wir haben schon lange beobachtet, dass sich in den Tagen nach der Blutung das abgelagerte Blut langsam zersetzt und das Hämoglobin aus den abgebauten roten Blutkörperchen in den Hirnwasserraum gelangt», sagt Emanuela Keller, Leiterin der neurochirurgischen Intensivstation des USZ.

Dieses Eiweiss, das normalerweise für den Sauerstofftransport zuständig ist, spielt eine wichtige Rolle in der Entstehung der verzögerten neurologischen Schäden.

«Anhand von Patientenproben und Versuchen an Schafen konnten wir nun zeigen, dass das Hämoglobin zu Krämpfen der Hirnarterien führt und tief ins Hirngewebe eindringt, wo es Nervenzellen direkt schädigen kann», sagt Studienleiter Dominik Schaer, UZH-Professor und Leitender Arzt der Klinik für Innere Medizin des USZ.

Haptoglobin bindet Hämoglobin und macht es unschädlich

Verantwortlich für die gefährliche Eigenschaft des Hämoglobins ist das Eisen, das sich im Zentrum des Proteins befindet: Es verfügt über eine hohe Bereitschaft, chemische Reaktionen einzugehen. Krankheiten wie Malaria, bei denen ebenfalls Hämoglobin freigesetzt wird, haben dazu geführt, dass der menschliche Körper im Verlauf der Evolution ein körpereigenes Schutzprotein namens Haptoglobin gebildet hat.

Im Blut bindet Haptoglobin freies Hämoglobin und verhindert so dessen toxische Effekte in Blutgefässen und Nieren. Allerdings ist die Konzentration von Haptoglobin im Gehirn sehr gering und bietet keinen ausreichenden Schutz nach einer Hirnblutung.

Indem die Forschenden Schafen gereinigtes Haptoglobin über einen Katheter direkt ins Hirnwasser verabreicht haben, machten sie sich diesen natürlichen Schutzmechanismus nun zu Nutze. «Wir konnten zeigen, dass gereinigtes Haptoglobin Gefässkrämpfe verhindert und das Eindringen von freiem Hämoglobin ins Hirngewebe blockiert», erklärt Dominik Schaer.

Entdeckung ermöglicht neuen Therapieansatz

Für Patienten mit Blutungen in den Hirnwasserraum haben diese Resultate ein grosses medizinisches Potenzial: «Wir haben eine Möglichkeit gefunden, wie die Toxizität von freiem Hämoglobin nach einer Hirnblutung möglicherweise verhindert werden kann. Für Betroffene würde dies die neurologische Prognose und die langfristige Lebensqualität bedeutend verbessern», sagt der Neurochirurg und Erstautor der Studie Michael Hugelshofer.

Wissenschaftliche Ansprechpartner:

Prof. Dr. med. Dominik Schaer
Klinik und Poliklinik für Innere Medizin
Universitätsspital Zürich
Tel. +41 44 255 23 82
dominik.schaer@usz.ch

Originalpublikation:

Michael Hugelshofer et. al. Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm. The Journal of Clinical Investigation. 27 August 2019. DOI: 10.1172/JCI130630 [Epub ahead of print].

Weitere Informationen:

https://www.media.uzh.ch/de/medienmitteilungen/2019/Haptoglobin.html

Rita Ziegler | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schutz der neuronalen Architektur
05.06.2020 | Universität Heidelberg

nachricht Akute myeloische Leukämie: Größerer Entscheidungsspielraum bei Therapie-Start
05.06.2020 | Nationales Centrum für Tumorerkrankungen Dresden (NCT/UCC)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sehvermögen durch Gentherapie wiederherstellen

Neuer Ansatz zur Behandlung bislang unheilbarer Netzhautdegeneration

Menschen verlassen sich in erster Linie auf ihr Augenlicht. Der Verlust des Sehvermögens bedeutet, dass wir nicht mehr lesen, Gesichter erkennen oder...

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Kleines Protein, große Wirkung

In Meningokokken spielt das unscheinbare Protein ProQ eine tragende Rolle. Zusammen mit RNA-Molekülen reguliert es Prozesse, die für die krankmachenden Eigenschaften der Bakterien von Bedeutung sind.

Meningokokken sind Bakterien, die lebensbedrohliche Hirnhautentzündungen und Sepsis auslösen können. Diese Krankheitserreger besitzen ein sehr kleines Protein,...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schutz der neuronalen Architektur

05.06.2020 | Biowissenschaften Chemie

Wie das Gehirn unser Sprechen kontrolliert - Beide Gehirnhälften leisten besonderen Beitrag zur Sprachkontrolle

05.06.2020 | Interdisziplinäre Forschung

Akute myeloische Leukämie: Größerer Entscheidungsspielraum bei Therapie-Start

05.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics