Blütenentwicklung in 3D: Es kommt aufs Timing an

Blütenstand von Arabidopsis thaliana (Ackerschmalwand). Wolfram Weckwerth

Der Systembiologe Wolfram Weckwerth und sein Team haben diese Wechselwirkung von Stoffwechsel und Entwicklungsprozessen bei Blütenpflanzen (Angiospermen) untersucht – diese 300.000 Arten umfassende Pflanzengruppe ist eine der wichtigsten, da sie einerseits in Form von Obst, Gemüse und Getreide die Grundlage unserer Ernährung bildet und andererseits auch maßgeblich zur Vielfalt von Ökosystemen beiträgt. In seiner Studie verknüpft er erstmals die Änderungen des Stoffwechsels mit genauen computertomographischen Daten der Blütenentwicklung.

In enger Kooperation mit Jürg Schönenberger und Yannick Städler vom Department für Botanik und Biodiversitätsforschung der Universität Wien hielten die ForscherInnen die Blütenentwicklung von Arabidopsis thaliana (Ackerschmalwand) von der Blühinduktion bis hin zur Bildung von reifen Samen mittels eines Computer-Tomographen in 3D-Bildern fest. Von den gleichen Proben wurden Stoffwechselprofile mittels Massenspektrometrie gemessen.

„So konnten wir kleinste Veränderungen der einzelnen Blütenorgane direkt mit den entsprechenden Stoffwechselaktivitäten vergleichen. Wir sahen signifikante Unterschiede des Stoffwechsels in den unterschiedlichen Phasen der Blütenentwicklung und insbesondere während der Entwicklung einzelner Organe der Blüte“, erklärt Wolfram Weckwerth, Leiter des Departments für Ökogenomik und Systembiologie. Ausgeprägte Phasen unterschiedlicher Stoffwechselaktivitäten geben einen Hinweis darauf, wie Stoffwechsel und Entwicklungsprozesse interagieren können. Die Integration von kompletten Stoffwechsel-Profilen und dreidimensionalen tomographischen Daten ist in dieser Form zum ersten Mal durchgeführt worden und eröffnet ein neues Forschungsfeld für entwicklungsbiologische, anatomische und metabolische Studien.

Entwicklung, Sex und Stoffwechsel
Die Blütenentwicklung findet ihre Vollendung in der Vereinigung von Eizelle und Spermium. Die Eizellen befinden sich stationär in den Samenanlagen des Fruchtknotens, während die Spermien mobil sind und vom Pollen mitgebracht werden. Bei der Befruchtung wandern sie durch auswachsende Pollenschläuche zu den Eizellen. Bei erfolgreicher Vereinigung entwickelt sich ein kleiner Embryo, der in jedem Samenkorn enthalten ist.

Ob eine Befruchtung erfolgreich ist, hängt vom richtigen Timing des Stoffwechsels ab, da dieser die Energie- und Biomasseressourcen für die Entwicklungsprozesse bereitstellt. Die Stoffwechselaktivitäten der einzelnen Entwicklungsphasen unterscheiden sich dabei dramatisch: War am Anfang vor allem eine hohe Aktivität des Disaccharid- und Aminosäurestoffwechsels zu beobachten, akkumulieren gegen Ende parallel zur Entwicklung der reifen Geschlechtsorgane Monosaccharide, Carbonsäuren und bestimmte Aminosäuren. Der reife Samen schließlich zeigt ein gänzlich anderes Stoffwechselmuster zu den vorhergehenden. „Es entstehen spezifische Stoffwechselsignaturen, die den genauen Ablauf der Organentwicklung der Blüte bis hin zum reifen Samen abbilden“, beschreibt Anke Bellaire, Erstautorin der Studie.

In zukünftigen Studien werden nun die Stoffwechselsignaturen der Blütenentwicklung unterschiedlicher Familien der Angiospermen untersucht, um generische Modelle der Interaktion von Stoffwechsel und Entwicklungsprozessen aufzustellen.

Publikation in „New Phytologist“:
Anke Bellaire, Till Ischebeck, Yannick Staedler, Isabell Weinhaeuser, Andrea Mair,
Sriram Parameswaran, Toshiro Ito, Jürg Schönenberger and Wolfram Weckwerth:
Metabolism and development – integration of micro computed tomography data and metabolite profiling reveals metabolic reprogramming from floral initiation to silique development.
In: New Phytologist (2014) 202: 322–335
DOI: 10.1111/nph.12631

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Wolfram Weckwerth
Department für Ökogenomik und Systembiologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-765 50
M +43-664-60277-765 50
wolfram.weckwerth@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Media Contact

Alexandra Frey idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Merkmale des Untergrunds unter dem Thwaites-Gletscher enthüllt

Ein Forschungsteam hat felsige Berge und glattes Terrain unter dem Thwaites-Gletscher in der Westantarktis entdeckt – dem breiteste Gletscher der Erde, der halb so groß wie Deutschland und über 1000…

Wasserabweisende Fasern ohne PFAS

Endlich umweltfreundlich… Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an….

Das massereichste stellare schwarze Loch unserer Galaxie entdeckt

Astronominnen und Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation,…

Partner & Förderer