Blockade in der zellulären Müllabfuhr

Anhäufungen von PolyQ-Proteinen (rot) verhindern den Abbau von fehlgefalteten Proteinen (grün) und sammeln sich in Einschlüssen im Zellinneren an. Der Zellkern ist in blau angefärbt.<br><br><br>Bild: Sae-Hun Park, Copyright: MPI für Biochemie.<br>

Weil fehlgefaltete Proteine häufig toxisch sind, werden sie sofort umgefaltet oder abgebaut. Wissenschaftler des Max-Planck-Instituts (MPI) für Biochemie in Martinsried bei München haben nun in Hefe gezeigt, dass bestimmte Proteinablagerungen einen wichtigen Abbauweg für defekte Proteine blockieren – und so das fragile molekulare Gleichgewicht in der Zelle stören. Die Ergebnisse der Studie wurden jetzt in der Fachzeitschrift Cell veröffentlicht.

Proteinablagerungen in Zellen können schwere Leiden wie die Huntington-Krankheit verursachen. Die massiven Bewegungsstörungen, die bei dieser Krankheit auftreten, werden vermutlich durch Ablagerungen von bestimmten Proteinen, den polyQ-Proteinen hervorgerufen. Wissenschaftler der Forschungsabteilung „Zelluläre Biochemie“ um F.-Ulrich Hartl konnten jetzt zeigen, wie diese Proteinablagerungen, auch Plaques genannt, das zelluläre Gleichgewicht empfindlich stören.

Zellen in der Balance

Die Gesamtheit aller zellulären Proteine bildet das Proteom, dessen Zusammensetzung über ein fein austariertes Gleichgewicht von Proteinherstellung und –abbau bestimmt wird. Dieser Prozess wird auf mehreren Ebenen reguliert. Zentrale Helfer sind hier die molekularen „Chaperone“, die Proteine bei der richtigen Faltung unterstützen oder aber bei irreparablen Fehlfaltungen dem Abbau zuführen. Dieses Vorgehen soll unter anderem die Bildung von Proteinplaques verhindern. Dem Team um Hartl gelang jetzt der Nachweis, dass polyQ-Ablagerungen in Hefe vor allem auf das Chaperon Sis1p wirken.

Dieses Molekül fungiert als zelluläres Shuttle: Es transportiert fehlgefaltete Proteine aus dem Zytosol in den Zellkern, wo sie abgebaut werden. Die schädlichen PolyQ-Plaques unterbinden diesen Prozess, indem sie Sis1p abfangen. „Dadurch häufen sich fehlgefaltete Proteine in der Zelle an, was zur Toxizität der PolyQ-Aggregate beitragen könnte“, sagt Sae-Hun Park, Wissenschaftler am MPI für Biochemie und Erstautor der Studie.

Möglicherweise laufen ähnliche Prozesse bei polyQ-Erkrankungen im Menschen ab. Denn auch in Säugerzellen werden fehlgefaltete Proteine aus dem Zytosol in den Kern transportiert. Hier spielt das Chaperon DnajB1 eine ähnliche Rolle wie Sis1p in Hefe. Das Team um Hartl geht nun sogar – entgegen herrschender Meinung – davon aus, dass dieser Abbauweg die wichtigste Art der Entsorgung fehlgefalteter Proteine aus dem Zellinneren ist. Weiterführende Studien sollen nun zeigen, ob und inwieweit diese fundamentalen Prozesse bei krankmachenden Proteinplaques eine Rolle spielen.

Originalpublikation:
Sae-Hun Park, Yury Kukushkin, Rajat Gupta, Taotao Chen, AyanoKonagai, Mark S. Hipp, Manajit Hayer-Hartl, F.Ulrich Hartl: PolyQ Proteins Interfere with Nuclear Degradation of Cytosolic Proteins by Sequestering the Sis1p Chaperone, Cell, June 20, 2013.
DOI: 10.1016/j.cell.2013.06.003

Kontakt:
Prof. Dr. F.-Ulrich Hartl
Zelluläre Biochemie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: uhartl@biochem.mpg.de
www.biochem.mpg.de/hartl

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel.: +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom/index.html
– Pressemitteilungen des MPI für Biochemie
http://www.biochem.mpg.de/hartl
– Forschungsabteilung „Zelluläre Biochemie“ (F.-Ulrich Hartl)

Media Contact

Anja Konschak Max-Planck-Institut

Weitere Informationen:

http://www.biochem.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer