Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blitzkuriere in der Zelle - Warum Motorproteine eine Bremse haben

20.05.2010
Jede einzelne unserer Zellen enthält so genannte Motorproteine, die wichtige Substanzen von einem Ort zum anderen transportieren. Doch darüber wie diese Transportvorgänge genau ablaufen ist bisher nur wenig bekannt.

Biophysiker der Technischen Universität München (TUM) und der Ludwig Maximilians Universität München (LMU) konnten nun grundlegende Funktionen eines besonders interessanten Motorproteins aufklären. In der aktuellen Ausgabe der Proceedings of the National Academy of Sciences (USA) berichten sie über ihre Ergebnisse.

Motorisierte Transportproteine sind einer der Schlüssel zur Entwicklung höherer Lebewesen. Erst durch sie ist es der Zelle möglich, wichtige Substanzen gezielt und schnell an einen bestimmten Ort in der Zelle zu liefern. Bakterien besitzen keine solchen Transportproteine, sie sind daher nicht in der Lage größere Zellen oder sogar große Organismen mit vielen Zellen zu bilden. Ganz besonders wichtig sind Transportproteine in den primären Zilien, den Antennen der Zellen, mit denen sie Informationen aus der Umgebung in die Zelle leiten.

Wie kleine Lastwagen auf einer Autobahn transportieren Kinesine zelluläre Materialien entlang von Proteinfasern, so genannten Mikrotubuli, die die gesamte Zelle durchziehen. Die Kinesine bestehen aus zwei langen, miteinander verdrillten Eiweißketten. Am einen Ende trägt jedes Protein einen Kopf, der an bestimmte Strukturen auf der Oberfläche der Mikrotubuli andocken kann, am anderen Ende wird die Fracht angehängt.

In den Zilien des Fadenwurms Caenorhabditis elegans sind ganz besondere Kinesine am Werk: Sie bestehen aus zwei unterschiedlichen Eiweißketten und eignen sich daher für die Untersuchung der Transportmechanismen besonders gut. Als Fracht hängten die Forscher kleine Kunststoffperlen an die Enden dieser Motorproteine. Mit einer “optischen Pinzette”, einem speziell profilierten Laserstrahl, können sie diese Perlen manipulieren.

Ein Ende des Proteinmoleküls wurde mit der optischen Pinzette fixiert, das andere konnte auf Mikrotubuli laufen. Auf diese Weise maßen die Wissenschaftler die Kraft, mit der das Motorprotein ziehen kann. In winzigen, acht Nanometer großen Schritten läuft das Kinesin-2 in dieser Versuchsanordnung mit seiner Fracht bis zu 1500 Nanometer weit. „Wenn wir es nicht festhalten würden, käme es vermutlich noch sehr viel weiter,“ sagt Zeynep Ökten, vom Institut für Zellbiologie der LMU.

Das untersuchte Kinesin-2 besteht aus einem KLP11- und einem KLP20-Protein. Indem sie die Köpfe der Ketten austauschten, konnten die Forscher zeigen, dass es sich bei KLP11, um ein nicht laufendes Motorprotein handelt. Erst in der Kombination mit dem KLP20 wird daraus ein Transportprotein. Bei weiteren Versuchen konnten sie klären, warum die Natur diese ungewöhnliche Kombination wählt: KLP20-Proteine haben keine „Bremse“. Ein Transportprotein aus zwei KLP20-Einheiten würde permanent laufen und Energie verbrauchen. Das KLP11 bringt dagegen einen Autoinhibierung genannten Mechanismus mit, der dafür sorgt, dass das Transportprotein still steht, wenn keine Fracht angebunden ist.

„Unsere Ergebnisse zeigen, dass ein molekularer Motor, will er in einer Zelle erfolgreich arbeiten, über den einfachen Transport hinaus eine Vielzahl an Funktionen übernehmen muss,“ sagt Professor Matthias Rief aus dem Physik-Department der TU München. Der Motor muss an- und abschaltbar sein, er muss zielgerichtet eine Last aufnehmen und diese am Ziel abgeben können. „Es ist beeindruckend wie die Natur es schafft, all diese Funktionen in einem Molekül zu vereinen. Hier ist sie allen Anstrengungen der modernen Nanotechnologie noch weit überlegen und dient uns allen als großes Vorbild.“

Die Arbeiten wurden gefördert aus Mitteln des Exzellenzclusters Center for Integrated Protein Science Munich, der European Microbiology Organization, der Deutschen Forschungsgemeinschaft (DFG) und der Friedrich-Baur-Stiftung.

Original-Publikation:

Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner,
Melanie Brunnbauer, Felix Mueller-Planitz, Süleyman Kösem, Thi-Hieu Hoa, Renate Dombi, J. Christof M. Gebhardt, Matthias Rief, und Zeynep Ökten

PNAS Early Edition, Week of May 17, 2010

Kontakt:

Prof. Matthias Rief
Lehrstuhl für Experimentalphysik (E 22)
Technische Universität München
James-Franck-Str. 1
85748 Garching, Germany
Tel.: +49 89 289 12471
Fax: +49 89 289 12523
E-Mail: mrief@ph.tum.de
Dr. Zeynep Ökten
Lehrstuhl für Zellbiologie
Ludwig Maximilians Universität München
Schillerstr. 42
80336 München, Germany
Tel.: +49 89 2180 75874
Fax: +49 89 2180 75883
E-Mail: zoekten@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.pnas.org/cgi/doi/10.1073/pnas.1005177107
http://portal.mytum.de/welcome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics