Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blinkende Nervenzellen verraten Gedanken

05.05.2010
Max-Planck-Forscher messen Gehirnsignale mit genetisch implantierter Lichtquelle

Elektrische Ströme sind für das menschliche Auge unsichtbar – zumindest wenn sie durch Kabel aus Metall fließen. In Nervenzellen können Wissenschaftler elektrische Signale dagegen sichtbar machen.

Zusammen mit Kollegen aus der Schweiz und Japan haben Wissenschaftler vom Max-Planck-Institut für medizinische Forschung in Heidelberg die elektrische Aktivität von Nervenzellen im intakten Gehirn von Mäusen sichtbar gemacht. In einer bahnbrechenden Studie konnten die Forscher nun die Aktivität von Nervenzellen mit Hilfe fluoreszierender Kalzium-Indikatorproteine bei komplexen Verhaltensweisen beobachten. (Frontiers in Neural Circuits, 29. April 2010)

Nervenzellen kommunizieren miteinander über so genannte Aktionspotenziale. Dabei öffnen sich spannungsgesteuerte Kanäle und Kalzium-Ionen strömen sehr schnell in die Zelle. Wegen dieser engen Beziehung können fluoreszierende Kalzium-Indikatorproteine Aktionspotenziale sichtbar machen. Diese Proteine besitzen zwei fluoreszierende Untereinheiten, die entweder gelbes oder blaues Licht abstrahlen. Sobald die Proteine Kalzium binden, verändert sich das Verhältnis von blauem zu gelbem Licht. Sich verändernde Kalzium-Konzentrationen lassen sich so an einer Farbverschiebung von blauem hin zu gelbem Licht ablesen – daher der Name „Chamäleon“.

Optische Messung von Aktionspotenzialen

Mit dem Chamäleon-Protein YC3.60, einer neueren Variante, gelang den Forschern, im intakten Gehirn von Mäusen die Reaktion von Nervenzellen auf sensorische Reize aufzuzeichnen: Auf jede Auslenkung der Schnurrhaare durch einen Luftstoß folgte ein Farbwechsel der Chamäleon-Proteine in den Nervenzellen der sensorischen Hirnrinde. Die betroffenen Zellen hatten folglich auf den Reiz mit Aktionspotenzialen reagiert. „Mit dem Chamäleon-Protein YC3.60 können wir Aktionspotenziale nicht nur in Hirnschnitten, sondern auch im unverletzten Gehirn messen. Das Molekül reagiert schnell und empfindlich und erfasst auch schnell aufeinander folgende Änderungen der Kalzium-Konzentrationen“, erklärt Mazahir Hasan vom Max-Planck-Institut für medizinische Forschung.

Die Forscher konnten aber nicht nur die Aktivität einzelner Zellen sondern auch von Nervenzellgruppen untersuchen. „YC3.60 hat sich damit als geeignetes Werkzeug erwiesen, um Nervengewebe auf unterschiedlichen Ebenen zu untersuchen: Einerseits können wir die Kalzium-Schwankungen verfolgen und so auf die Entstehung und Weiterleitung von Aktionspotenzialen innerhalb von Nervenzellen schließen. Noch besser ist, dass wir gleichzeitig die Aktivität einzelner neuronaler Schaltkreise und ganzer Gehirnregionen messen können“, sagt Mazahir Hasan. Die Forscher wollen deshalb als nächstes Chamäleon-Proteine in einer ganz bestimmten Schicht der Hirnrinde oder in unterschiedlichen Typen von Nervenzellen einbringen. „Dann können wir vielleicht verstehen, wie unterschiedliche Nervenzellen in neuronalen Schaltkreisen komplexe Verhaltensweisen erzeugen“, hofft Mazahir Hasan.

Messungen ohne Elektroden

Chamäleon-Proteine könnten also künftig die Untersuchung der elektrischen Aktivität im Gehirn revolutionieren. Denn bisher mussten Wissenschaftler dazu Elektroden in das Nervengewebe oder in Zellen einführen. Elektroden können jedoch nicht zwischen Zelltypen unterscheiden und schädigen das Gewebe. Die Farbänderungen der Chamäleon-Proteine können dagegen mit Glasfasern als Lichtleiter bzw. modernen Fluoreszenz-Mikroskopen – so genannten Zwei-Photonen-Laser-Scanning-Mikroskopen – deutlich schonender beobachtet werden. Zudem können Chamäleon-Proteine von den Zellen selbst gebildet werden, wenn zuvor ein entsprechender DNA-Abschnitt in das Erbgut eingebracht wurde. In den Experimenten der Forscher dienten Viren als Fähre, um die Erbinformation für die Chamäleon-Proteine in die Nervenzellen zu schleusen.

In früheren Studien war es einem internationalen Forscherteam um Mazahir Hasan erstmalig gelungen, Sinnesreize wie Berührungen oder Geruch mit Hilfe ähnlicher genetischer Sonden in Form von charakteristischen Aktivitätsmustern wahrzunehmen (Hasan et al., 2004). Später gelang dies sogar auf der Ebene einzelner Zellen und Aktionspotenziale (Wallace et al., 2008). In der aktuellen Arbeit mit YC3.60 konnten die Wissenschaftler nun die Aktivität vieler Nervenzellen gleichzeitig über einen langen Zeitraum oder sogar in sich frei bewegenden Tieren aufzeichnen.

Wissenschaftler können also künftig mit Licht untersuchen, wie die Aktivität von Nervenzellen komplexe Verhaltensweisen hervorruft und wie Gedächtnisinhalte entstehen und wieder verloren gehen. Außerdem lässt sich mit dieser Technik analysieren, wie sich die Aktivität von Nervenzellen im Alter oder bei Erkrankungen wie Alzheimer, Parkinson oder Schizophrenie verändert.

Originalveröffentlichung

Original work:

Henry Lütcke, Masanori Murayama, Thomas Hahn, David J. Margolis, Simone Astori, Stephan Meyer zum Alten Borgloh, Werner Göbel, Ying Yang, Wannan Tang, Sebastian Kügler, Rolf Sprengel, Takeharu Nagai, Atsushi Miyawaki, Matthew E. Larkum, Fritjof Helmchen and Mazahir T. Hasan
Optical recording of neuronal activity with a genetically encoded calcium indicator in anesthetized and freely moving mice.

Frontiers in Neural Circuits, 29 April 2010. (doi: 10.3389/fncir.2010.00009)

Kontakt
Dr. Mazahir T. Hasan
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: +49-6221-486617
mazahir.hasan@mpimf-heidelberg.mpg.de
http://wmn.mpimf-heidelberg.mpg.de/hasan

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Türsteher im Gehirn
06.08.2020 | Institute of Science and Technology Austria

nachricht Peptide: Forschungs-Erfolg mit den kleinen Geschwistern der Proteine
06.08.2020 | Hochschule Coburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics