Blick ins Viren-Proteom

Detaillierte 3D-Struktur des Herpes-Virus: mehrere Hüllschichten umgeben das Kapsid, das die DNA des Virus enthält. <br><br>© MPI f. Biochemie/ Kay Grünewald<br>

In den Erbanlagen ist der gesamte Bauplan für einen Organismus und alle seine Proteine verpackt. Viren, die bis zu 1000fach kleiner sind als menschliche Zellen, besitzen wesentlich kleinere Genome.

Am Beispiel des Herpesvirus konnten die Wissenschaftler des Max-Planck-Instituts für Biochemie in Martinsried bei München und ihre Kooperationspartner an der Universität von Kalifornien in San Francisco jetzt aber zeigen, dass das Genom dieses Virus sehr komplex organisiert ist und viel mehr verschlüsselte Informationen enthält als bisher angenommen. Die Forscher entdeckten mehrere hundert bisher unbekannte Proteine, von denen ein Großteil unerwartet klein ist.

Über 80 Prozent der Weltbevölkerung sind mit dem Herpesvirus infiziert. Bei Neugeborenen und Personen mit geschwächtem Immunsystem kann dies schwere Erkrankungen auslösen. Bereits vor 20 Jahren entschlüsselten Forscher sein Genom und glaubten somit alle Proteine, die das Virus produziert (Virus-Proteom), vorhersagen zu können.

Die Wissenschaftler aus der Forschungsabteilung von Matthias Mann, Direktor am Max-Planck-Institut für Biochemie, analysierten mit ihren amerikanischen Kollegen den Informationsgehalt des Erbgutes jetzt genauer.

Für ihre Studie ließen die Wissenschaftler Herpesviren in Zellen eindringen und beobachteten über einen Zeitraum von 72 Stunden, welche Proteine das Virus im Inneren der Zelle herstellte. Damit Proteine überhaupt entstehen können, bildet die Zellmaschinerie zuerst Kopien des Erbguts als Zwischenprodukte (RNA). Bei der Untersuchung der Zwischenprodukte des Herpesvirus entdeckten die amerikanischen Kollaborationspartner viele bisher unbekannte RNA-Moleküle, von denen der Großteil überraschend kurz war. Außerdem zeigte sich, wie komplex die Informationen für die Proteinherstellung im Virusgenom organisiert sind.
Annette Michalski, Wissenschaftlerin in der Abteilung „Proteomics und Signaltransduktion“ am Max-Planck-Institut für Biochemie, konnte dann mit Hilfe der Massenspektrometrie die neu vorhergesagten Proteinmoleküle des Virus direkt nachweisen. Diese am Martinsrieder Institut entwickelte Methode ermöglicht die Gesamtansicht des Proteoms der Virus-infizierten Zelle.

Die Ergebnisse der amerikanischen und deutschen Forscher geben einen detaillierten Einblick in die komplexen Mechanismen, mit denen der Erreger arbeitet. „Wir konnten zeigen, dass es nicht ausreicht, nur das Virusgenom genau zu kennen, um die Biologie des Herpesvirus zu verstehen“ meint Annette Michalski.

„Es ist wichtig, sich die Produkte anzuschauen, die tatsächlich aus dem Genom entstehen.“ Auch die menschlichen Erbanlagen könnten wesentlich komplexer sein, als der Bauplan zunächst glauben lässt, so die Forscher. Matthias Mann und seine Mitarbeiter haben sich zum Ziel gesetzt, diese Frage in den nächsten Jahren weiter zu untersuchen.

Ansprechpartner

Prof. Dr. Matthias Mann
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2557
Fax: +49 89 8578-2219
Email: mmann@­biochem.mpg.de
Anja Konschak
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824
Fax: +49 89 8578-3777
Email: konschak@­biochem.mpg.de

Originalpublikation
N. Stern-Ginossar , B. Weisburd, A. Michalski, V. T. Khanh Le, M. Y. Hein, S.-X. Huang, M. Ma, B. Shen, S.-B. Qian, H. Hengel, M. Mann, N. T. Ingolia, J. S. Weissmann
Decoding Human Cytomegalovirus
Science, 23. November 2012

Media Contact

Prof. Dr. Matthias Mann Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer