Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bislang unbekannte Proteinbausteine der GABAB-Rezeptoren identifiziert

20.04.2010
Freiburger und Basler Neurobiologen entdecken lange gesuchte Proteinbausteine eines der wichtigsten Rezeptoren des zentralen Nervensystems – Veröffentlichung in „Nature“

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel berichten in der renommierten Wissenschaftszeitschrift „Nature“ von der Entdeckung bislang unbekannter Untereinheiten der GABAB-Rezeptoren im zentralen Nervensystem – GABAB-Rezeptoren sind Transmembranproteine in Nervenzellen, die für die Funktion des Gehirns von fundamentaler Bedeutung, aber auch von großem therapeutischen und pharmazeutischen Nutzen sind.

Den Forschern um Prof. Dr. Bernd Fakler vom Physiologischen Institut der Universität Freiburg und Center for Biological Signalling Studies BIOSS und Prof. Dr. Bernhard Bettler vom Departement Biomedizin der Universität Basel ist es gelungen, die Zusammensetzung von GABAB-Rezeptoren des Gehirns umfassend zu analysieren.

Dabei haben sie vier Mitglieder einer bislang uncharakterisierten Genfamilie, der so genannten KCTD-Proteine, als neue Bestandteile der GABAB-Rezeptorkomplexe identifiziert. Wie die Forscher zeigen konnten, bestimmen die KCTD-Proteine sowohl die pharmakologischen als auch die biophysikalischen Eigenschaften der GABAB-Rezeptoren. Unter anderem erklären die neu identifizierten Proteine, warum die bisher schon bekannten Untereinheiten die Eigenschaften der Hirnrezeptoren nicht reproduzieren konnten.

GABA (= γ-amino-butyric acid)-Rezeptoren sind die wichtigsten hemmenden Neurotransmitter-Rezeptoren des zentralen Nervensystems. Diese Rezeptoren verhindern, dass Nervenzellen zu stark aktiviert werden, was zu neurologischen und psychiatrischen Erkrankungen, wie Krampfanfällen, Depressionen oder Angstzuständen führen kann. Bekannt sind zwei unterschiedliche GABA-Rezeptortypen, die GABAA- und GABAB-Rezeptoren. GABAA-Rezeptoren sind für die schnelle Hemmung im Gehirn verantwortlich und Angriffspunkt wichtiger Medikamente, wie etwa von Valium, das zur Behandlung von Angstzuständen, in der Therapie epileptischer Anfälle und als Schlafmittel eingesetzt wird. GABAB-Rezeptoren sind für eine länger andauernde Hemmung der Nervenzellen wichtig. Medikamente, die GABAB-Rezeptoren aktivieren, werden zur Behandlung von Rückenmarksverletzungen und Multipler Sklerose, sowie bei der Therapie von Suchterkrankungen und Narkolepsie eingesetzt.

Die jetzt in „Nature“ veröffentlichten Erkenntnisse könnten von großem therapeutischem Nutzen sein. Damit sollte es in Zukunft möglich sein, Medikamente zu entwickeln, die einen bestimmten Rezeptorsubtyp selektiv beeinflussen. Man erhofft sich von solchen Medikamenten sowohl weniger Nebenwirkungen als auch neue therapeutische Anwendungsmöglichkeiten.

Neben diesen speziellen Anwendungen ist die Arbeit der Freiburger und Basler Physiologen für die Pharmaindustrie aus einem weiteren Grund von großem Interesse. GABAB-Rezeptoren gehören zur Familie der G-Protein gekoppelten Rezeptoren (GPCRs), der größten und vielseitigsten Gruppe von Membranrezeptoren.

In der Medizin nehmen GPCRs eine Schlüsselposition ein: Etwa 60 Prozent aller verschreibungspflichtigen Medikamente, die derzeit auf dem Markt sind, wirken auf diese Rezeptoren. Die Entdeckung, dass GPCRs komplexer aufgebaut sind und zusätzlich zu den Rezeptor-Proteinen noch weitere spezifische Untereinheiten enthalten, die deren Signaltransduktion entscheidend beeinflussen, könnte die Anzahl unterschiedlicher GPCRs, und damit möglicher Zielproteine für Arzneimittel, sprunghaft ansteigen lassen.

Veröffentlichung: Nature: Native GABAB receptors are heteromultimers with a family of auxiliary subunits.
Jochen Schwenk, Michaela Metz, Gerd Zolles, Rostislav Turecek, Thorsten Fritzius, Wolfgang Bildl, Etsuko Tarusawa, Akos Kulik, Andreas Unger, Klara Ivankova, Riad Seddik, Jim Y. Tiao, Mathieu Rajalu, Johana Trojanova, Volker Rohde, Martin Gassmann, Uwe Schulte, Bernd Fakler, Bernhard Bettler
Published online: 18. April 2010, doi:10.1038/nature08964
Bu: Bisher wurde angenommen, dass GABAB-Rezeptoren ein Heterodimer aus zwei Untereinheiten (rot und orange) bilden. Die neuen Ergebnisse zeigen, dass die bekannten Untereinheiten ein Tetramer bilden, das wiederum mit zwei Tetrameren der neu identifizierten KCTD-Proteine (grün, nur ein KCTD-Tetramer ist sichtbar) assoziert ist. Verschiedene KCTD-Proteine beeinflussen die Aktivierung von Effektorproteinen (G-Proteine, blau) und die pharmakologischen Eigenschaften des Rezeptorkomplexes in unterschiedlicher Weise.

Kontakt: Prof. Dr. Bernd Fakler Institut für Physiologie und Center for Biological Signalling Studies (bioss) Universität Freiburg Tel.: 0761/203-5175 E-Mail: bernd.fakler@physiologie.uni-freiburg.de

Melanie Hübner | Uni Freiburg
Weitere Informationen:
http://www.pr.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wälder auf dem Radar
21.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Wenn Zellen zu Kannibalen werden
21.10.2019 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Atombilder zeigen ungewöhnlich viele Nachbarn für einige Sauerstoffatome

21.10.2019 | Physik Astronomie

Bioprinting: Lebende Zellen im 3D-Drucker

21.10.2019 | Biowissenschaften Chemie

Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

21.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics