Biologischer Nanomotor mit Hybridantrieb entdeckt

Methanbildende Archaeen gehören zu den ursprünglichsten Lebensformen auf der Erde. In den Tiefen der Ozeane gewinnen diese Mikroorganismen Energie für ihren Stoffwechsel, indem sie aus Kohlendioxid und Wasser Methan herstellen.

Energetisch gesehen ist dies am Limit dessen, was überhaupt Leben erlaubt. Wie die Methanbildung mit der Synthese der zellulären Energiewährung Adenosintriphosphat (ATP) einhergeht, haben jetzt Mikrobiologen der Goethe-Universität zusammen mit Kollegen vom Max-Planck-Institut für Biophysik in Frankfurt geklärt.

Wie die Forscher in der Fachzeitschrift PNAS berichten, nutzt das Archaeon Methanosarcina acetivorans die bei der Methanbildung freiwerdende Energie, um Natriumionen und Protonen aus dem Zellinneren zu pumpen. Damit wird über der Membran ein elektrochemischer Gradient erzeugt, ähnlich dem Aufladen einer Batterie. ATP-Synthasen nutzen nun diesen „Batteriestrom“ zur Synthese von ATP. Dazu verfügen sie über eine membrangebundene Turbine. Angetrieben wird sie durch Ionen, die in das Cytoplasma zurückfließenden, ähnlich einer Turbine, die „Wasserkraft“ in elektrischen Strom umwandelt.

Während bisher nur Turbinen bekannt waren, die entweder durch Natriumionen oder Protonen angetrieben werden, hat die ATP-Synthase aus M. acetivorans eine Turbine, die das Ladungsgefälle der Natriumionen und Protonen gleichzeitig nutzt. „Die ursprünglichsten Lebensformen nutzen wahrscheinlich exklusiv Natriumionen für die Energiekonservierung. Moderne Lebensformen sind dann komplett auf Protonen umgestiegen“, erläutert Prof. Volker Müller von der Abteilung Molekulare Mikrobiologie und Bioenergetik der Goethe-Universität. „Da M. acetivorans bisher das einzige bekannte Lebewesen ist, das beide Ionengradienten nutzen kann, liegt es nahe, es als Bindeglied der Evolution anzusehen“.

Die Idee zu dieser Untersuchung entstammt der Klimaforschung. „Meine Doktorandin Katharina Schlegel wollte im Rahmen eines Projektes am Forschungszentrum Biodiversität und Klima (BiK-F) erforschen, wie sich methanbildende Archaeen an trockene und salzhaltige Standorte anpassen. Als sich herausstellte, dass wir einem neuen Motor auf der Spur sind, haben wir die biochemischen und molekularen Untersuchungen im Rahmen des Sonderforschungsbereichs ‚Transport und Kommunikation über biologische Membranen‘ weitergeführt und die Zusammenarbeit mit den Biophysikern gesucht“, erklärt Müller, der zugleich Projektleiter des Sonderforschungsbereichs (SFBs) ist.

Mit dem Max Planck-Institut für Biophysik besteht seit Jahren eine enge Kooperation über diesen SFB sowie über den Exzellenzcluster „Makromolekulare Komplexe“. „Eine so enge Verzahnung von angewandter Forschung und Grundlagenforschung, und eine thematische Spannweite von der Klimaforschung zum strukturbasierten Modell der Ionenspezifität eines membrangebundenen Nanomotors, ist so nur in Frankfurt möglich ist“, freut sich Prof. Müller über den gemeinsamen Erfolg.

Publikation:
Schlegel, K., Leone, V., Faraldo-Gomez, J.D., Müller, V. (2012) Promiscous arachael ATP synthase concurrently coupled to Na+ and H+ translocation. Proc. Natl. Acad. Sci. USA, doi;10.1073/pnas.1115796109
Eine Abbildung zum Download finden Sie unter:
www.muk.uni-frankfurt.de/pm/pm2012/0112/9/
Bildtext:
Ein biologischer Nanomotor mit Hybridantrieb in dem methanildenden Archaeon Methanosarcina acetivorans. Der Mikroorganismus frisst Essigsäure (Acetat) und bildet daraus als Methan und Kohlendioxid. Die Energie, die dabei frei wird, nutzt das Archaeon, um Natriumionen und Protonen über die Cytoplasmamembran zu pumpen. Dadurch wird ein elektrochemisches Gefälle erzeugt, das die ATP-Synthase antreibt.

Informationen: Prof. Volker Müller, Abteilung Molekulare Mikrobiologie und Bioenergetik, Campus Riedberg, Tel.: (069) 798-29507, VMueller@bio.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer