Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biochemiker entdecken neuen Mechanismus bei der Bildung von Ribosomen

02.11.2012
Als Anhalter in den Zellkern: Protein steuert synchronisierten Transport von Ribosomenbestandteilen

Einen neuen Mechanismus bei der Bildung von Ribosomen haben Wissenschaftler des Biochemie-Zentrums der Universität Heidelberg entdeckt. In einem interdisziplinären Ansatz beschreiben die Heidelberger Forscher gemeinsam mit Kollegen aus der Schweiz und Japan ein bislang unbekanntes Protein, das bei der Ribosomenherstellung in Eukaryoten – dies sind alle Lebewesen, deren Zellen einen Zellkern besitzen – eine besondere Rolle spielt.

Dieses Protein sorgt dafür, dass bestimmte für die Bildung der Ribosomen erforderliche Bestandteile wie „Anhalter“ gemeinsam an den Ort transportiert werden, an dem der Herstellungsprozess stattfindet. Die Forschungsergebnisse wurden in „Science“ veröffentlicht.

Ribosomen – die Proteinfabriken der Zelle – sind makromolekulare Komplexe aus Ribonukleinsäuren (RNA) und ribosomalen Proteinen (r-Proteine), die in einer speziellen dreidimensionalen Struktur arrangiert sind. Die korrekte Ribosomenherstellung ist von entscheidender Bedeutung für das Überleben aller Zellen und ein nach strengen Regeln ablaufender Prozess. Die Bildung neuer Ribosomen vollzieht sich bei Eukaryoten hauptsächlich im Zellkern. Dazu müssen die für die Herstellung erforderlichen r-Proteine aus dem Zellplasma an den Ort im Zellkern transportiert werden, an dem die Ribosomen zusammengesetzt werden. Bisher war unklar, ob r-Proteine, die eine ähnliche Funktion besitzen und daher in der Ribosomenstruktur funktionelle Cluster bilden, nicht auch zusammen in den Zellkern transportiert werden.

Die Wissenschaftler haben nun ein Protein entdeckt, das den gemeinsamen Transport bestimmter r-Proteine in funktionalen Clustern in den Zellkern koordiniert. Es trägt den Namen Symportin1, der den „synchronisierten Import“ bezeichnet. „Symportin1 synchronisiert den Import der beiden r-Proteine Rpl5 und Rpl11 in den Zellkern und unterstützt deren Einbau in die wachsende Ribosomenstruktur“, erläutert Prof. Dr. Irmgard Sinning vom Biochemie-Zentrum der Universität Heidelberg (BZH). „Dabei kommt ein logistisches Konzept zum Einsatz, das aus dem Alltag bekannt ist, etwa wenn wir im Auto einen Anhalter mitnehmen oder uns ein Taxi teilen, weil wir dasselbe Ziel haben“, sagt Dr. Gert Bange vom BZH, der gemeinsam mit Dr. Dieter Kressler (jetzt Universität Fribourg) Erstautor der Veröffentlichung ist.

Die Wissenschaftler der Universität Heidelberg und der Universität Fribourg (Schweiz) haben bei ihrer Forschung eng mit Kollegen der japanischen Universität Osaka zusammengearbeitet. „Die Kombination verschiedener Methoden in einem Spektrum von ,klassischer‘ Zellbiologie bis hin zu neuen biophysikalischen Ansätzen war die entscheidende Grundlage dafür, dass wir diesen bisher nicht bekannten biologischen Mechanismus nun detailliert beschreiben können“, betont Prof. Dr. Ed Hurt, der ebenfalls Mitglied des BZH ist. Bei den Untersuchungen kam die Kristallisationsplattform des Biochemie-Zentrums zum Einsatz; die Forschungsarbeiten wurden vom Exzellenzcluster „CellNetworks“ der Universität Heidelberg unterstützt.

Originalpublikation:
D. Kressler, G. Bange, Y. Ogawa, G. Stjepanovic, B. Bradatsch, D. Pratte, S. Amlacher, D. Strauß, Y. Yoneda, J. Katahira, I. Sinning, E. Hurt: Synchronizing Nuclear Import of Ribosomal Proteins with Ribosome Assembly, Science (2 November 2012), Vol. 338 no. 6107, 666-671, doi: 10.1126/science.1226960
Kontakt:
Prof. Dr. Irmgard Sinning / Prof. Dr. Ed Hurt
Biochemie-Zentrum der Universität Heidelberg
Telefon (06221) 54-4781, -4173
irmi.sinning@bzh.uni-heidelberg.de
ed.hurt@bzh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem
24.05.2019 | Universität Leipzig

nachricht Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken
24.05.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics