Bild oder Spiegelbild? Laserlicht entscheidet über Händigkeit von Molekülen

Im Zentrum befindet sich das Modell der Ameisensäure. Der Farb-Code der ihr umgebenden Sphäre zeigt die mittlere Händigkeit der Ameisensäure für jede Richtung aus welcher der Laser kommt. Schießt man von der rechten Seite (rechter Pfeil), so erhält man die rechtshändige Ameisensäure, von der linken Seite, die Linkshändige Ameisensäure. Die beiden chiralen Ameisensäuren spiegeln die gemessene Struktur der Moleküle wider.

„Für die Pharmazie wäre es ein Traum, wenn man statt mit nasser Chemie ein Molekül mit Licht von einer in die andere Händigkeit überführen könnte“, erklärt Prof. Reinhard Dörner vom Institut für Kernphysik der Goethe-Universität.

Sein Doktorand Kilian Fehre ist der Realisierung dieses Traumes nun einen entscheidenden Schritt nähergekommen. Seine Beobachtung: Je nachdem, aus welcher Richtung Laserlicht auf das Ausgangsmolekül trifft, entsteht die rechts- oder linkshändige Variante.

Für sein Experiment verwendete Kilian Fehre ein planares Molekül, die Ameisensäure. Dieses regte er mit einem intensiven, zirkular polarisierten Laserpuls an, um es in eine chirale Form zu überführen. Gleichzeitig zerbrach das Molekül durch die Bestrahlung in seine atomaren Bestandteile. Die Zerstörung des Moleküls war für das Experiment notwendig, um überprüfen zu können, ob die Bild- oder Spiegelbild-Variante entstanden war.

Für die Analyse verwendete Fehre das am Institut für Kernphysik entwickelte „Reaktionsmikroskop“ (COLTRIMS-Methode). Damit kann man einzelne Moleküle in einem Molekülstrahl untersuchen. Nach der explosionsartigen Zerlegung des Moleküls misst der Detektor mit hoher Genauigkeit, aus welcher Richtung und mit welcher Geschwindigkeit die Fragmente ankommen. So lässt sich die räumliche Struktur des Moleküls rekonstruieren.

Um künftig chirale Moleküle mit der gewünschten Händigkeit selektiv herstellen zu können, wird man gewährleisten müssen, dass die Moleküle im Verhältnis zum zirkular polarisierten Laserstrahl gleich orientiert ist. Das könnte man erreichen, indem man sie vorher mit einem langwelligen Laserlicht räumlich ausrichtet.

Die Erkenntnis könnte auch für die Herstellung größerer Mengen von Molekülen mit einheitlicher Händigkeit eine Schlüsselrolle spielen. Hier jedoch, vermuten die Forscher, würde man eher Flüssigkeiten als Gase mit Laserlicht bestrahlen. „Bis dahin jedoch ist noch viel Arbeit zu tun“, schätzt Kilian Fehre.

Nachweis und Manipulation chiraler Moleküle mittels Licht ist das Thema eines von der Deutschen Forschungsgemeinschaft seit 2018 geförderten Sonderforschungsbereiches mit dem griffigen Namen „ELCH“, zu dem sich Wissenschaftler aus Kassel, Marburg, Hamburg und Frankfurt zusammengeschlossen haben. „Diese langfristige Förderung und die enge Zusammenarbeit in dem Sonderforschungsbereich gibt uns den langen Atem, um in Zukunft Chiralität in einer großen Klasse von Molekülen steuern zu lernen“, freut sich Markus Schöffler, einer der Frankfurter Projektleiter des Sonderforschungsbereiches.

Ein Bild zum Download finden Sie unter: www.uni-frankfurt.de/76731281

Bildtext: Im Zentrum befindet sich das Modell der Ameisensäure. Der Farb-Code der ihr umgebenden Sphäre zeigt die mittlere Händigkeit der Ameisensäure für jede Richtung aus welcher der Laser kommt. Schießt man von der rechten Seite (rechter Pfeil), so erhält man die rechtshändige Ameisensäure, von der linken Seite, die Linkshändige Ameisensäure. Die beiden chiralen Ameisensäuren spiegeln die gemessene Struktur der Moleküle wider.

Kilian Fehre, Telefon: (069) 798-47004, fehre@atom.uni-frankfurt.de; Prof. Reinhard Dörner, Telefon: (069) 798-47003, doerner@atom.uni-frankfurt.de; Dr. Markus Schöffler, (069) 798-47022, schoeffler@atom.uni-frankfurt.de. Institut für Kernphysik, Fachbereich Physik, Campus Riedberg.

K. Fehre, S. Eckart, M. Kunitski, M. Pitzer, S. Zeller, C. Janke, D. Trabert, J. Rist, M. Weller, A. Hartung, L. Ph. H. Schmidt, T. Jahnke, R. Berger, R. Dörner und M. S. Schöffler: Enantioselective fragmentation of an achiral molecule in a strong laser field, in: Science Advances,
doi: 10.1126/sciadv.aau7923

Media Contact

Dr. Anne Hardy idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer