Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen

Langerhans´sche Inseln des Pankreas einer diabetischen Maus: Zellkerne in Weiß, Betazellen und Insulin in Grün, Alphazellen (Hormon Glucagon) in Rot und Deltazellen (Hormon Somatostatin) in Magenta. Helmholtz Zentrum München / Aimée Bastidas-Ponce

Unter bestimmten Bedingungen verlieren Betazellen ihre Identität und fallen in einen weniger differenzierten Zustand zurück, in dem sie die meisten ihrer früheren Funktionen verlieren. Man geht davon aus, dass diese Dedifferenzierung zu einer fortschreitenden Dysfunktion von Betazellen beiträgt.

Derzeitige medikamentöse Diabetestherapien sind nicht in der Lage, den Verlust funktioneller Betazellmasse aufzuhalten. Je früher dieser Rückgang verhindert werden kann – im Idealfall bereits beim Auftreten erster Anzeichen einer Diabeteserkrankung – desto höher ist die Anzahl und das Funktionsniveau der Betazellen, die erhalten bleiben.

Neues therapeutisches Ziel: Dedifferenzierte Betazellen

Lässt sich die Funktion von dedifferenzierten Betazellen über eine pharmakologische Behandlung wiederherstellen? Um diese Frage zu beantworten, arbeitete die Forschungsgruppe an Streptozotocin-induziertem Diabetes in Mäusen. Streptozotocin tötet insulinproduzierende Betazellen ab und verursacht schweren Diabetes.

Wenn es jedoch in mehreren niedrigen Dosen injiziert wird, überleben einige Betazellen. Mit Hilfe der sogenannten Einzelzell-RNA-Sequenzierung konnten die Wissenschaftlerinnen und Wissenschaftler zeigen, dass die überlebenden Betazellen nach der Streptozotocin-Behandlung dedifferenzieren.

Die Einfachheit des verwendeten Modells (keine genetischen Läsionen und keine Autoimmunität) half dabei, die Wirkung der pharmakologischen Behandlung besser zu überwachen.

Ein gutes Team: GLP-1/Östrogen und Insulin zeigen in präklinischen Modellen eine additive Wirkung

Anhand des Modells prüften die Forschenden verschiedene Wirkstoffe darauf, ob sie die Funktion der dedifferenzierten Betazellen wiederherstellen konnten oder nicht. Dazu stratifizierten sie sieben Kohorten von Mäusen mit schwerem Diabetes und behandelten sie in einem Zeitraum von 100 Tagen täglich mit einzelnen oder kombinierten Wirkstoffelementen.

Das Ergebnis: Ein stabiles Konjugat aus dem Glucagon-ähnlichem Peptid-1 (GLP-1) und Östrogen (bereitgestellt von Novo Nordisk) ermöglichte eine gezielte und selektive Abgabe des Hormons in die Betazellen.

Dabei erzielte die Kombination von GLP-1/Östrogen und einem langwirkenden Insulin besser Erfolge als eine Behandlung mit den einzelnen Wirkstoffen. Dies zeigte sich sowohl in der Normalisierung der Glykämie und Glukosetoleranz als auch in der Erhöhung des Insulingehalts der Bauchspeicheldrüse und der Anzahl der Betazellen.

Die Verabreichung hoher Dosen von GLP-1/Östrogen zeigte in Ratten keine Anzeichen systemischer Toxizität – eine wichtige Voraussetzung für künftige klinische Tests. In Zusammenarbeit mit dem Biotech-Unternehmen InSphero stellten die Forscher zudem fest, dass GLP-1/Östrogen, aber nicht GLP-1 oder Östrogen allein, die Funktion der Betazellen in menschlichen Zellen sogar dann erhöht, wenn die pankreatischen Inseln Zytokin-Stress ausgesetzt sind – ein Zustand, der die Funktion der Betazellen beeinträchtigt.

„Unsere Studie zeigt nicht nur Wege und Prozesse der Betazell-Dedifferenzierung. Wir konnten auch das Potenzial einzelner und kombinatorischer medikamentöser Behandlungen von dedifferenzierten Betazellen für eine Diabetes-Remission beschreiben“, erklärt Prof. Dr. Heiko Lickert, Direktor des Instituts für Diabetes- und Regenerationsforschung am Helmholtz Zentrum München und Professor für Betazellbiologie an der Fakultät für Medizin der Technischen Universität München (TUM).

„Dies ist die erste Studie, die eine Betazell-Redifferenzierung durch eine gezielte pharmakologische Intervention nachweist. Sie wurde von einem interdisziplinären Team durchgeführt – mit dem Einsatz modernster Techniken wie Einzelzellsequenzierung, Computational Biology, pharmakologischen Ansätzen und Regenerationsbiologie“, sagt Lickert, der dieses Forschungsprojekt zusammen mit Susanna M. Hofmann, Fabian Theis und Timo D. Müller vom Helmholtz Zentrum München leitet.

GLP-1/Östrogen in klinischen Studien?
Diese Studie brachte Wissenschaftlerinnen und Wissenschaftler des Helmholtz Zentrums München (Helmholtz Diabetes Center und Institut für Computational Biology), des Deutschen Zentrums für Diabetesforschung (DZD), der TUM sowie der InSphero AG und Novo Nordisk zusammen, um den möglichen therapeutischen Nutzen einer GLP1/Östrogen-Behandlung im Tiermodell und an menschlichen Zellen in vitro zu untersuchen.

Die Ergebnisse dieser Studie sowie künftiger Studien zur Sicherheit des Wirkstoffs für den Menschen könnten den Weg für klinische Studien ebnen. GLP-1 könnte künftig als Trägerpeptid für Östrogen, aber möglicherweise auch für andere, neuartige Wirkstoffe verwendet werden, um Betazellen direkt anzusprechen und im Sinne einer regenerativen Therapie die Remission von Diabetes zu unterstützen.

Das Helmholtz Zentrum München verfolgt als Forschungszentrum die Mission, personalisierte medizinische Lösungen zur Prävention und Therapie von umweltbedingten Krankheiten für eine gesündere Gesellschaft in einer sich schnell verändernden Welt zu entwickeln.

Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.500 Mitarbeitende und ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands mit mehr als 40.000 Mitarbeitenden in 19 Forschungszentren.

Das Helmholtz Diabetes Center (HDC) ist eines der größten europäischen Diabetes-Forschungszentren. Angesiedelt am Helmholtz Zentrum München verbindet es die Expertise eines weltweit führenden Zentrums für Grundlagenforschung mit der langjährigen Tradition der Diabetesforschung in München. Renommierte Wissenschaftlerinnen und Wissenschaftler arbeiten gemeinsam an neuartigen Therapien, Prävention und Diagnose für alle Formen von Diabetes.

Vorrangiges Ziel des Instituts für Diabetes- und Regenerationsforschung (IDR) am Helmholtz Zentrum München ist es, regenerative Therapieansätze zur Behandlung des Diabetes mellitus zu entwickeln – komplementär und alternativ zu den klassischen immunologischen und metabolischen Therapiestrategien.

Daher sollen gegenwärtige Ansätze für die funktionelle Betazellproduktion in vitro verbessert werden, um letztendlich alternative Quellen für Betazellen für die Zellersatztherapie bei Diabetes bereitzustellen. Zusätzlich analysiert und charakterisiert das Institut die embryonalen und adulten Vorläuferzellen der Bauchspeicheldrüse, um die Entwicklung, Homöostase und Funktion der Betazellen für die In-vivo-Regeneration zu verstehen.

Die Auslösung der endogenen Beta-Zellregeneration ist ein vielversprechender Ansatz zur Wiederherstellung der Betazellmasse und der Normoglykämie bei Patienten mit Diabeteserkrankung.

Prof. Dr. Heiko Lickert
Helmholtz Zentrum München
heiko.lickert@helmholtz-muenchen.de

Sachs, S. et al, 2020: Targeted pharmacological therapy restores β-cell function for diabetes remission. Nature Metabolism, DOI: 10.1038/s42255-020-0171-3.

https://doi.org/10.1038/s42255-020-0176-y

Media Contact

Verena Schulz Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Informationen:

http://www.helmholtz-muenchen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer