Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hallesche Pflanzengenetiker erringen großen Erfolg im Kampf gegen Paprika-Pusteln

26.10.2007
In der aktuellen Ausgabe des renommierten Wissenschaftsmagazins "Science", die heute erscheint, sind Pflanzengenetiker der Martin-Luther-Universität Halle-Wittenberg (MLU) gleich zweimal vertreten.

Prof. Dr. Ulla Bonas, Dr. Thomas Lahaye und ihre Mitarbeiter haben herausgefunden, wie ein für Tomaten- und Paprika-Pflanzen spezifischer Krankheitserreger funktioniert - und welchen Mechanismus Pflanzen nutzen, um diesen Krankheitserreger abzutöten. Ihre Erkenntnisse könnten für die Landwirtschaft von hoher Bedeutung sein. Es werden davon wahrscheinlich auch weitere Wissenschaftler profitieren, die die Erkrankungen anderer Pflanzen erforschen.

Es gilt als sehr bedeutend, einen Artikel in der Zeitschrift "Science" zu veröffentlichen, einem der weltweit wichtigsten Wissenschaftsmagazine. In einer Ausgabe gleich zwei Artikel zu platzieren, "das ist der Knaller", sagt Prof. Dr. Ulla Bonas stolz. Aber der Forschungserfolg der dahinter stehe, sei eben auch ein "Knaller". Die entscheidende Rolle in den beiden Publikationen spielt ein Protein namens AvrBs3. "Das Gen, welches dieses Protein kodiert, ist vor rund 20 Jahren isoliert worden, ich habe daran in meiner Postdoc-Zeit gearbeitet", berichtet die hallesche Forscherin. "Danach haben wir stückweise versucht, herauszubekommen, wie es funktioniert."

Bakterien, die Pflanzen befallen, injizieren einen Cocktail bakterieller Proteine über eine nadelartige Struktur in Pflanzenzellen hinein. Der wenig bekömmliche Cocktail bewirkt, dass die befallenen Pflanzen schneller altern und weniger Früchte tragen. "AvrBs3 ist ein Protein dieses Cocktails, das in Paprika- und Tomaten-Pflanzen Schäden anrichtet. Diese Cocktail-Komponente führt zu charakteristischen Pusteln auf den Blättern der Paprika-Pflanze", erläutert Ulla Bonas. Bakterielle Krankheiterreger sind in hiesigen Klimazonen nicht von Bedeutung, denn sie sind nicht frostresistent. "Aber in Regionen mit warmen und feuchtem Klima, zum Beispiel Florida und Israel, führt der Krankheitserreger zu immensen Verlusten." Im Gegensatz zu Pilzen, die in hiesigen Breiten wichtige Pflanzenschädlinge darstellen, sind Bakterien jedoch ein einfacheres System für wissenschaftlich Untersuchungen.

Ulla Bonas und ihre Kollegen am Institut für Biologie der Martin-Luther-Universität haben nun herausgefunden, wie das AvrBs3-Protein wirkt. "Es geht direkt in den Kern der Pflanzenzelle und weist als bakterielles Protein Eigenschaften auf wie ein Protein aus einem höheren Organismus. Aufgrund seiner Struktur ist das bakterielle Protein in der Lage, die Genregulation seines pflanzlichen Wirtes zu verändern. Es wirkt dabei im Zellkern, der Schaltzentrale der Pflanzenzelle, und nutzt die Maschinerie der Wirtspflanze zum eigenen Vorteil aus." Die Umprogrammierung bedingt, dass plötzlich Proteine in hoher Zahl produziert werden, die normalerweise nur auf niedrigem Niveau hergestellt werden. "Das ist, als wenn man die Produktion eines bestimmten Teiles in einer Fabrik hochfährt. Dieses Hochfahren haben wir nun beobachten können", so die Hauptautorin der entsprechenden "Science"-Veröffentlichung.

Die meisten bakteriellen Proteine, die ihren Wirt manipulieren, greifen auf der Protein-Ebene an. "Dieses bakterielle Protein dreht jedoch an Schaltern, die im Kern zu finden sind, auf der Ebene der DNA, des Erbguts. Deshalb sind die Erkenntnisse wirklich neu und so spannend", ergänzt Dr. Thomas Lahaye. Er ist der Hauptautor des zweiten Artikels, in dem es um Pflanzen geht, die gegen das fragliche Protein resistent sind. "Wir konnten zeigen, dass die Pflanze dann genau denselben Mechanismus nutzt wie in der nicht resistenten Pflanze. Das bakterielle Protein schaltet ein Gen ein, dass für einen lokalen Zelltod sorgt. Die Zellen, die mit dem Erreger sterben, opfern sich sozusagen. Somit wird die bakterielle Vermehrung gestoppt.". Bei den bisher bekannten Resistenzmechanismen der Pflanze ermöglichen pflanzliche Proteine die Erkennung des Krankheitserregers. "Hier erfolgt die Erkennung des Krankheitserregers über die DNA. Das Protein, das für den Zelltod sorgt, ist zunächst nicht vorhanden, es muss erst produziert werden. Es wird produziert, und es hat eine völlig neue Struktur - das ist das bahnbrechend Neue an unseren Ergebnissen."

Die halleschen Pflanzengenetiker betreiben Grundlagenforschung, sehen aber gute Chancen für eine Anwendung ihrer neuesten Erkenntnisse. "Damit man so etwas anwenden kann, muss man die Mechanismen verstehen", führt Thomas Lahaye aus. Langfristig sind unsere Erkenntnisse für die Landwirtschaft von hoher Bedeutung, und es sind auch schon einige Firmen interessiert an dem, was wir machen. Zudem können viele Kollegen auf unseren Arbeiten aufbauen, zum Beispiel diejenigen, die mit Reis arbeiten." Es gebe viele Bakterien, die weltweit auf Reisfeldern große Schäden verursachen. Diese Bakterien enthalten Proteine, die AvrBs3 sehr ähnlich sind. "Was wir herausgefunden haben, ist nicht spezifisch für eine Pathogen-Familie. Da der Mechanismus vermutlich auf breiter Ebene Gültigkeit hat, ist er so spannend und bedeutend."

Für ihre Forschungen haben die MLU-Wissenschaftler im Laufe der Jahre rund 4500 Paprika-Pflanzen analysiert. Zum universitären Biologicum auf dem halleschen Weinberg Campus gehört ein eigenes Gewächshaus. Genutzt haben die Forscher zudem das Gewächshaus des halleschen Biozentrums. Gefördert wurden die Arbeiten von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereiches 648 ("Molekulare Mechanismen der Informationsverarbeitung in Pflanzen"), dessen Sprecherin Prof. Dr. Ulla Bonas ist und durch einen DFG-Einzelantrag von Herrn Dr. Lahaye. An der MLU gibt es zudem das Exzellenznetzwerk "Strukturen und Mechanismen der biologischen Informationsverarbeitung". Es war im Rahmen der Offensive "Netzwerke wissenschaftlicher Exzellenz in Sachsen-Anhalt" etabliert worden, die das Kultusministerium ins Leben gerufen hatte.

Ansprechpartner:
Prof. Dr. Ulla Bonas
Tel.: 0345 55 26301 oder 55 26290
E-Mail: ulla.bonas@genetik.uni-halle.de
Dr. Thomas Lahaye
Tel.: 0345 55 26345
E-Mail: thomas.lahaye@genetik.uni-halle.de
Anmerkung:
Am 25. und 26.10.2007 befinden sich die beiden Wissenschaftler auf einer Tagung. Bitte formulieren Sie Interviewwünsche daher per E-Mail an die oben genannten Adressen. In dringenden Fällen wenden Sie sich bitte an den Pressereferenten der MLU, Carsten Heckmann, Tel.: 0345 55 21004.

Carsten Heckmann | idw
Weitere Informationen:
http://www.sfb648.uni-halle.de
http://www.sciencemag.org

Weitere Berichte zu: Krankheitserreger Lahaye Pflanzengenetiker Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics