Wissenschaftler weisen an einem altertümlichen asexuellen Rädertierchen eine besondere Art der Evolution nach

Es kommt auch ohne Sex aus, das kleine Rädertierchen Adineta ricciae. Bild: Natalia N. Pouchkina-Stantcheva

Asexuelle Fortpflanzung hat in der Evolution einen erheblichen Nachteil: Sie erzeugt normalerweise zu wenig genetische Variabilität. Es gibt allerdings Überlegungen, dass unter den Bedingungen von asexueller Fortpflanzung Varianten eines Gens unterschiedliche Entwicklungswege einschlagen und schließlich zu Proteinen mit unterschiedlicher Funktion führen.

Wissenschaftler der Universitäten Cambridge und Angers und des Max-Planck-Instituts für molekulare Pflanzenphysiologie in Potsdam haben nun an einem kleinen Rädertierchen nachgewiesen, dass dieser Weg im Zuge asexueller Vermehrung tatsächlich beschritten wird und die Anpassungsfähigkeit des Organismus – in diesem Fall seine Austrocknungstoleranz – erhöht (Science, 12. Oktober 2007).

Warum pflanzen sich eigentlich nahezu alle Organismen sexuell fort? Ginge es nur um reine Zahlen, Sex wäre schon längst von der Bildfläche verschwunden oder im Verlauf der Evolution erst gar nicht entstanden. Denn gemessen am Reproduktionserfolg ist sexuelle Fortpflanzung der asexuellen, die auf die Produktion nicht reproduktiver Männchen verzichtet, weit unterlegen. Doch sexuelle Fortpflanzung führt zu einer größeren genetischen Variabilität – das ist ihr großer Vorteil. Väterliches und mütterliches Erbgut werden bei den Nachkommen neu kombiniert; positive Mutationen können somit zusammengeführt, negative überdeckt werden. Genetische Variabilität ist daher eine „Versicherung“ für die Zukunft: Innerhalb einer Population wird es immer Individuen geben, die bei sich ändernden Umweltbedingungen besser angepasst sind als ihre Artgenossen und damit das Überleben der Art sichern.

Die Nachkommen asexueller Fortpflanzung sind dagegen genetisch identisch, es sind Klone ihrer Mutter. Ihre Anpassungsfähigkeit an sich ändernde Umweltbedingungen ist aufgrund der geringeren genetischen Variabilität erschwert. Zahlreiche sich asexuell fortpflanzende Organismen schieben deshalb immer wieder einen sexuellen Fortpflanzungszyklus ein, wie zum Beispiel die Wasserflöhe.

Einer der wenigen Organismen, der sich seit Millionen von Jahren asexuell fortpflanzt, ist das kleine Rädertierchen Adineta ricciae. Ein Team von Wissenschaftlern der Universitäten Cambridge und Angers und des Max-Planck-Instituts für molekulare Pflanzenphysiologie in Potsdam hat die Anpassungsfähigkeit dieses mikroskopisch kleinen Vielzellers in Bezug auf Austrocknung untersucht. Grundlage ihrer Überlegungen war der sogenannte Meselson-Effekt. Er besagt, dass sich im Zuge der asexuellen Vermehrung Allele (das sind Varianten ein und desselben Gens) unabhängig voneinander entwickeln, da ihre genetischen Sequenzen nicht mehr bei der Entstehung der Geschlechtszellen (Meiose) auf Gleichartigkeit überprüft werden. Auf diese Art und Weise käme also auch ein sich asexuell fortpflanzender Organismus zu genetischer Variabilität. Würde sich bei einem bestimmten Gen ein Beleg für diesen besonderen Evolutionsmechanismus finden lassen?

Die Wissenschaftler wählten ein Allelpaar, also die zwei Varianten eines Gens aus, dessen Proteine in Zusammenhang mit der Austrocknungstoleranz des Rädertierchens stehen. So produziert das eine Gen (Ar-lea-1a) ein Protein, das die Proteine in der Zelle daran hindert, bei Austrocknung zu verklumpen, während das Protein des anderen Gens (Ar-lea-1b) die Zellmembran vor Schäden bei Austrocknung schützt, indem es an sie bindet und ein Reißen verhindert. Diese veränderte Bindungseigenschaft ist auf eine Sequenzänderung von 13,5 Prozent zwischen den beiden Genen zurückzuführen. „Ein solcher Sequenzunterschied innerhalb zweier Allele wird bei sich sexuell fortpflanzenden Organismen nicht erreicht“, sagt der Max-Planck-Wissenschaftler Dirk Hincha. Die Arbeit der Forscher liefert somit einen Nachweis, dass der von Meselson postulierte Effekt in der Natur tatsächlich auftritt und einen wirksamen Anpassungsmechanismus für einen sich asexuell fortpflanzenden Organismus darstellt. Vermutlich kann Adineta ricciae deshalb seit Millionen Jahren auf Sex verzichten.

[JR/CB]

Originalveröffentlichung:

Natalia N. Pouchkina-Stantcheva, Brian M. McGee, Chiara Boschetti, Dimitri Tolleter, Sohini Chakrabortee, Antoneta V. Popova, Filip Meersman, David Macharel, Dirk K. Hincha & Alan Tunnacliffe
Functional divergence of former alleles encoding LEA proteins in a desiccation-tolerant, ancient asexual invertebrate

Science, 12. Oktober 2007

Media Contact

Dr. Bernd Wirsing Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer