Angriffsmechanismus bei Multipler Sklerose entschlüsselt

Ein internationales Wissenschaftsteam hat einen neuen Angriffsmechanismus bei Multipler Sklerose gefunden, der die Schädigung von Nervenzellen erklären könnte. Das Forscherteam, dem unter anderem auch Wissenschaftler des Max-Planck-Instituts für Neurobiologie und des Instituts für klinische Neuroimmunologie (LMU) angehören, hat neue Antikörper im Blut finden können.

Lähmungen, Empfindungsstörungen und Sehstörungen sind Beispiele für Symptome der Multiplen Sklerose (MS). Die Erkrankung wird aufgrund ihres verschiedenen Erscheinungsbildes auch als „die Krankheit mit den tausend Gesichtern“ bezeichnet. Durch den Angriff des eigenen Immunsystems verlieren Nervenzellen im Gehirn und im Rückenmark ihren Myelin-Schutzmantel. Dadurch werden die Nervenfasern geschädigt und bleibende Behinderungen sind die Folge. Klare Vorhersagen, wie der Verlauf der Erkrankung sein wird, kann man selten stellen.

Um besser zu verstehen, wie das Immunsystem den Myelin-Schutzmantel angreift, haben die Forscher zunächst untersucht, welche Myelinbestandteile von Antikörpern erkannt werden. Dabei konnten sie Antikörper gegen das Protein Neurofascin entdecken. Das ist ein sehr spannender Fund, denn Neurofascin kommt nicht nur als Bestandteil des Myelin-Schutzmantels vor, sondern ist in einer zweiten Form auch direkt auf der Oberfläche der Nervenfasern zu finden. Laboruntersuchungen haben gezeigt, dass Antikörper von MS- Patienten beide Neurofascin-Formen erkennen und binden können. Bei Menschen, die nicht an MS erkrankt sind, versperrt nicht nur der Schutzmantel, sondern auch die Blut-Hirn-Schranke den Zugang zu den Nervenzellen generell. Doch auch bei MS-Patienten, wo Antikörper ins Gehirn gelangen können, ist die Myelin-Neurofascin-Variante bei Nervenzellen mit unbeschädigtem Myelin-Schutzmantel nicht zugängig. Das bedeutet, dass der Angriff an dieser Stelle erst dann möglich ist, nachdem der Schutzmantel schon durch andere Mechanismen geschädigt wurde.

Anders verhält es sich mit der Neurofascin-Form, die direkt auf der Oberfläche der Nervenzelle verankert ist. Diese Form findet sich an den so genannten Ranvier'schen Schürringen – das sind Myelin-freie Aussparungen im Schutzmantel, die alle paar Millimeter entlang der Nervenfaser auftreten. Diese Schnürringe sorgen für eine deutlich schnellere und effizientere Impulsübertragung entlang der Nervenfasern. An diesen Stellen ist Neurofascin nur noch durch die Blut-Hirn-Schranke vor einem Angriff der entsprechenden Antikörper geschützt. Aber auch diese wird in einem der frühen Schritte der MS porös und für Antikörper durchlässig. „Wir haben gezeigt, dass die Bindung zwischen Antiköper und dem Schnürring-Neurofascin dann nicht nur die Informationsweiterleitung der Zellen blockiert, sondern auch die Nervenfasern schädigt“, so Edgar Meinl, einer der Studienleiter im pressetext-Interview. „Die direkte Schädigung der Nervenzellen durch Antikörper ist ein völlig neuer Angriffsmechanismus dieser komplizierten Krankheit und könnte zum Krankheitsbild einiger Patienten beitragen.“

Als nächsten Schritt arbeitet Meinl mit seinem Team an einem Testverfahren zur Ermittlung der Konzentration der Antikörper gegen Neurofascin im Blut. „Wir wollen feststellen, ob Patienten mit einer höheren Konzentration an Antikörpern auch einen schwereren Krankheitsverlauf haben“, so Meinl. Damit soll die Menge an Antikörpern quantifizierbar werden. „Langfristig könnte durch das Entfernen der Antikörper aus dem Blut ein neuer Therapieansatz entstehen“, erklärt der Forscher abschließend gegenüber pressetext.

Media Contact

Wolfgang Weitlaner pressetext.austria

Weitere Informationen:

http://www.neuro.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer