Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plasma ohne Vakuum

10.04.2002


Prinzipskizze der Entladungsanordnung. ©Fraunhofer


Umweltschonende High-Tech-Verfahren zum Beschichten von Oberflächen sind häufig aufwendig und benötigen spezielle Vakuumeinrichtungen. Auf der Hannover Messe (15. bis 20. April) stellen Fraunhofer-Forscher Verfahren vor, die diese Nachteile nicht haben: Sie arbeiten bei normalem Atmosphärendruck.

Fensterscheiben, Solarzellen, Flachbildschirme oder CDs haben eines gemeinsam - sie werden immer häufiger mit Hilfe von Vakuum-Plasmaverfahren beschichtet und so gegen Verschleiß oder Korrosion geschützt. Das Prinzip ist lange bekannt: Im Vakuum wird Gas durch Energiezufuhr angeregt. Es entstehen energiereiche Ionen und Elektronen und andere reaktive Teilchen, die das Plasma bilden. Damit lassen sich die verschiedensten Oberflächen modifizieren, beschichten oder reinigen.

Die bisherigen Vakuum-Plasmaverfahren haben jedoch einen Nachteil: "Anwender müssen bei solchen Beschichtungsprozessen zum Teil mit hohen Investitionskosten rechnen", sagt Marko Eichler, Forscher am Fraunhofer-Institut für Schicht- und Oberflächentechnik IST. Bei Plasma-Behandlungen von Werkstücken sind teure Vakuumpumpen und -kammern erforderlich, die den notwendigen Niederdruck erzeugen und aufrechterhalten. Zudem schlagen die laufenden Kosten der bisher üblichen Niederdruck-Plasmaverfahren kräftig zu Buche, denn die Beschichtungskammern lassen sich in der Regel nicht ohne weiteres in die vorhandenen Produktionslinien einer Anwenderfirma integrieren. Am IST haben sich Wissenschaftler deshalb in zwei durch das Bundesministerium für Bildung und Forschung BMBF geförderten Verbundprojekten intensiv mit alternativen Plasmabehandlungen befasst. Dabei haben sie Corona-Entladungen genauer unter die Lupe genommen. Diese Gasentladungen lassen sich auch unter normalen Luftdruckverhältnissen erzeugen. Deren technische Nutzung macht - für bestimmte Anwendungen - die teure Vakuumkammer samt der dafür notwendigen Pumpen überflüssig.

Einen Durchbruch erzielten die Fraunhofer-Experten jetzt mit einem neuen Verfahren für die gezielte Funktionalisierung von Oberflächen: Damit Lacke, Klebstoffe oder Druckfarbe gut haften, muss die Oberfläche zuvor mit definierten physikalischen und chemischen Eigenschaften wie zum Beispiel besserer Benetzbarkeit ausgestattet werden. "Bisher ging man davon aus, dass es mit Plasmaverfahren bei Atmosphärendruck nicht möglich sein würde, chemisch gut definierte Oberflächen herzustellen", so Marko Eichler. Die Forscher am IST konnten jetzt aber zeigen, dass sich unter bestimmten Prozessbedingungen auch bei Normaldruck Schichten herstellen lassen, die chemisch ähnlich gut definiert sind wie herkömmliche Polymere. Zudem sind sie sehr fest an der Oberfläche angekoppelt. Auf diese Weise können beispielsweise stark wasserabstoßende Oberflächen hergestellt werden oder es können gezielt sehr reaktive Verbindungen auf einer Oberfläche angekoppelt werden, die dann chemisch stabile Bindungen zu anderen Materialien eingehen.

Der positive Verlauf der bisherigen Entwicklungsarbeiten spornt die Fraunhofer-Entwickler an, das kostengünstige Corona-Verfahren weiteren Anwendungen zugänglich zu machen. "Sicherlich kann die vakuumunabhängige Plasmabeschichtung nicht alle Schichtsysteme, die mit Niederdruckverfahren hergestellt werden, ersetzen. Besonders die mit Ionenbeschuss erzeugten hochvernetzten Kohlenwasserstoffschichten, die fast so hart wie Diamanten sind, können mit Abscheidungen aus Corona-Entladungen nicht realisiert werden", schränkt Eichler ein. Es gibt jedoch zahlreiche Einsatzfälle, bei denen auch bei Atmosphärendruck ähnliche Beschichtungsergebnisse wie im Vakuum realisiert werden konnten. Ein Beispiel sind Siliciumoxid-Schichtsysteme für Anwendungen im Korrosionsschutz. Bislang werden Metalloberflächen zum Schutz vor Korrosion vor der Lackierung einer nasschemischen Chromatierung oder Phosphatierung unterzogen. Das erhöht die Haltbarkeit des Bauteils und sorgt für eine bessere Haftung des Lackes. Am Beispiel von pulverlackierten, elektrolytisch verzinkten Blechen konnten Fraunhofer-Wissenschaftler zeigen, dass ultradünne Corona-Beschichtungen den Ergebnissen der herkömmlichen nasschemischen Behandlung im Korrosionsschutz ebenbürtig sind und diese zum Teil übertreffen.

Interessenten können sich über das Verfahren auf dem Fraunhofer-Gemeinschaftsstand "Oberflächen: Innovation durch Funktion" in Halle 27, Stand B14 informieren. Weitere neue Entwicklungen aus der Oberflächentechnik stellen die Fraunhofer-Institute für Holzforschung, Wilhelm-Klauditz-Institut WKI, Elektronenstrahl- und Plasmatechnik FEP, Produktionstechnik und Automatisierung IPA, Angewandte Optik und Feinmechanik IOF, Silicatforschung ISC und Solare Energiesysteme ISE aus.

Ansprechpartner:
Marko Eichler
Telefon 05 31/55-6 36, Fax 05 31/21 55-9 00, eichler@ist.fraunhofer.de
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST
Bienroder Weg 54 E
38108 Braunschweig

Dr. Johannes Ehrlenspiel | idw
Weitere Informationen:
http://www.ist.fraunhofer.de/

Weitere Berichte zu: Atmosphärendruck Korrosion Oberflächentechnik Plasma Vakuum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Enzyme besser nutzen: Neues Forschungsprojekt an der Jacobs University Bremen
19.09.2018 | Jacobs University Bremen gGmbH

nachricht Unordnung kann Batterien stabilisieren
18.09.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fester Platz im Unternehmen - 36 Auszubildende und Studierende der Friedhelm Loh Group erhalten Zeugnisse

19.09.2018 | Unternehmensmeldung

Virtual Reality ohne Kopfschmerz oder Simulationsübelkeit

19.09.2018 | Informationstechnologie

Kaiserslauterer Architekten setzen Holzkuppel dank Software einfach wie Puzzle zusammen

19.09.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics