Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoffmonoxid geht im Körper andere Wege als bislang vermutet

04.04.2002


Forschungen in Gießen, Würzburg und San Diego zeigen das - Publikation in "Nature Cell Biology" im April

Das Gas Stickstoffmonoxid (NO) hat im Körper des Menschen an vielen Stellen wichtige Funktionen: Es entspannt die glatte Muskulatur, erweitert die Blutgefäße oder wirkt der Entstehung von Blutgerinnseln entgegen. Für die Entdeckung der Bedeutung von NO im Herz-Kreislaufsystem wurde 1998 der Medizin-Nobelpreis verliehen. Die bislang verbreitete Vorstellung über die Arbeitsweise dieses Botenstoffs muss nun ergänzt werden. Das haben Wissenschaftler der Universitäten Gießen und Würzburg herausgefunden. Ihre Ergebnisse stellen sie in der Zeitschrift "Nature Cell Biology" im April vor.

Es ist nicht verwunderlich, dass Forscher genau wissen wollen, wie NO im Körper wirkt schließlich kommt dieses Gas für die Behandlung von Krankheiten in Betracht. Ein Beispiel: Ein Herzpatient bekämpft seine Angina pectoris mit einem "Nitrospray". Aus diesem Mittel wird in seinem Körper NO freigesetzt. Die Herzkranzgefäße erweitern sich, das Engegefühl in der Brust verschwindet. Die Forschung kann umso gezielter Medikamente entwickeln, je besser sie die Abläufe im Organismus kennt.

Was das Stickstoffmonoxid betrifft, so herrschte bisher folgende Überzeugung vor: NO wird auch vom Körper selbst gebildet und kann - als Gas - problemlos durch die Zellmembranen hindurchtreten, um im Inneren der Zellen seinen Wirkort zu erreichen. Dieser wird aktiviert und erhöht darauf hin die Konzentration eines zweiten Botenstoffes (cGMP) der Zelle. Dadurch werden Prozesse angestoßen, die letztlich für die spezifische Wirkung von NO verantwortlich sind.

Allerdings gab es bereits Hinweise darauf, dass dieses klassische Konzept nicht ganz richtig sein kann, etwa die Tatsache, dass Stickstoffmonoxid in einer Zellmembran besser löslich ist als im Zellinneren. Auch theoretische Überlegungen sprachen eigentlich gegen eine Diffusion von NO durch mehrere Zellschichten, wie dies aber beispielsweise für eine Blutgefäßwand notwendig sein müsste. Darum beschlossen Prof. Dr. Harald Schmidt, Rudolf-Buchheim-Institut für Pharmakologie der Justus-Liebig-Universität Gießen, und seine Arbeitsgruppe in Gießen und Würzburg zusammen mit Kollegen aus San Diego, das Konzept der Wirkungsweise von NO zu überprüfen.

Die Forschergruppen fanden heraus, dass der NO-Rezeptor, die lösliche Guanylylcyclase (sGC), keineswegs ein rein lösliches Protein ist, wie man seit mehr als 20 Jahren meinte. Stattdessen ist der Rezeptor in vielen Zellverbänden von Mensch und Tier - etwa in der Blutgefäßwand, im Herzmuskel und in Blutplättchen - zumindest teilweise mit der Zellmembran verbunden. Dort befindet er sich in unmittelbarer Nachbarschaft zu den Enzymen, die NO produzieren. Diese räumliche Nähe ist sinnvoll, weil NO instabil ist und auf diese Weise schnell sein Ziel erreicht.

Außerdem fanden die Forscher heraus, dass der mit einer Membran verknüpfte Rezeptor viel empfindlicher auf NO reagiert als der lösliche Rezeptor und die Anbindung an die Zellmembran reguliert wird. Die Arbeiten werden im Rahmen des Gießener Sonderforschungsbereichs "Kardiopulmonales Gefäßsystem" (SFB 547, Sprecher: Prof. Dr. Werner Seeger) gefördert, dessen stellvertretender Sprecher Prof. Harald Schmidt ist.

Der Artikel "Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide" von Ulrike Zabel, Christoph Kleinschnitz, Oh Phil, Pavel Nedvedsky, Albert Smolenski, Helmut Müller, Petra Kronich, Peter Kugler, Ulrich Walter, Jan E. Schnitzer und Harald H. H. W. Schmidt, wurde in der Online-Version von "Nature Cell Biology" vorab bereits im März 2002 publiziert. In gedruckter Form wird er jetzt im April erscheinen.

Kontaktadresse:

Prof. Dr. Harald Schmidt
Rudolf-Buchheim-Institut für Pharmakologie
Frankfurter Str. 107
35392 Gießen
Tel.: 0641/99-47600
Fax: 0641/99-47619
E-Mail: harald.schmidt@pharma.med.uni-giessen.de

Christel Lauterbach | idw
Weitere Informationen:
http://www.med.uni-giessen.de/rbi/

Weitere Berichte zu: Cell Rezeptor Stickstoffmonoxid Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues über ein Pflanzenhormon
07.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Selbstlernende Netzwerke lassen Forscher mehr sehen
07.12.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Großes Interesse an erster Fachtagung

07.12.2018 | Veranstaltungen

Entwicklung eines Amphibienflugzeugs

04.12.2018 | Veranstaltungen

Neue biologische Verfahren im Trink- und Grundwassermanagement

04.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erstmalig in Deutschland: Erfolgreiche Bestrahlungstherapie lebensbedrohlicher Herzrhythmusstörung

07.12.2018 | Medizintechnik

Nicht zu warm und nicht zu kalt! Seminar „Thermomanagement von Lithium-Ionen-Batterien“ am 02.04.2019 in Aachen

07.12.2018 | Seminare Workshops

Seminar „Magnettechnik - Magnetwerkstoffe“ vom 19. – 20.02.2019 in Essen

07.12.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics