Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verhungern trotz Fettpolstern

07.05.2007
Fliegen mobilisieren Fettreserven über zwei Schlüsselmechanismen

Anhand von fetten Fliegen haben Max-Planck-Forscher wichtige Erkenntnisse über den Fettstoffwechsel gewonnen. Ihnen ging es um die Frage, wie viele und welche Mechanismen bei dieser elementaren Funktion des Energiehaushaltes mitwirken. In ihren Versuchen mit Mutanten der Taufliege Drosophila entdeckten sie, dass zwei biochemische Schlüsselmechanismen die Speicherung und insbesondere die Mobilisierung von Fettreserven im Körper steuern. (PLoS Biology, 7. Mai 2007)


Akkumulation von Fetttreihen (rot) im Speicherfettgewebe von Fliegen, deren Fettmobilisierung blockiert ist (rechts) im Vergleich zu dem normaler Fliegen (links). Bild: Ronald P. Kühnlein

Um Fettreserven zu speichern und zu mobilisieren, agieren in einem gesunden Organismus verschiedene Mechanismen in feiner Balance. Wird diese gestört, hat dies schwerwiegende Folgen, wie die Forscher vom Max-Planck-Institut für biophysikalische Chemie in Göttingen in ihren Taufliegen-Experimenten beobachten konnten. Sie hatten bei den Tieren zwei Mechanismen einzeln oder gemeinsam inaktiviert. Dabei stellte sich heraus, dass eine doppelte Störung nicht nur extrem fettleibig macht, sondern auch die Fähigkeit des Körpers aufhebt, in Notzeiten auf die Energiereserven zuzugreifen. Taufliegen mit einer Doppelmutation setzten viermal so viel Fett an wie gewöhnliche Artgenossen.

Trotzdem verhungerten diese fetten Brummer bei einer Nulldiät schneller als normale Fliegen. Exemplare, bei denen sie nur einen der beiden Mechanismen deaktiviert hatten, setzten zwar auch mehr Fett an als üblich, konnten aber während einer Hungerperiode auf ihre Ressourcen zurückgreifen - wenn auch nur eingeschränkt. Immerhin: Fürs Überleben reichte es.

Ronald Kühnlein und seine Kollegen betreiben am Göttinger Max-Planck-Institut Grundlagenforschung an der Taufliege Drosophila. Speziell interessieren sie sich dafür, wie bei ihr der Fettstoffwechsel im Detail funktioniert. Diesmal ging es ihnen um die Mechanismen bei der Mobilisierung (Lipolyse) von gespeichertem Fett im Fliegenkörper. Wie Drosophila ihre Fettreserven speichert, hatten sie bereits in einer früheren Studie herausgefunden. Die Taufliege lagert sie in Form von Fetttröpfchen in den Zellen spezieller Speichergewebe ein - wie man dies auch von Säugetieren kennt. "Die chemische Zusammensetzung dieses Speicherfetts ist identisch", sagt Kühnlein: "In beiden Fällen handelt es sich um Triglyzeride." Auch die Art der Mobilisierung der Fettreserven sei verblüffend ähnlich bei Taufliege und Mensch. "Wenn Fett verstoffwechselt werden soll, braucht man Fett spaltende Enzyme: die Brummer-Lipase beim Insekt und bei Säugetieren die so genannte ATGL", so der Forscher. "Damit haben wir zwei sehr ähnliche Proteine, die in sehr unterschiedlichen Organismen denselben Job ausüben." Die großen Gemeinsamkeiten zwischen Insekten und Säugetieren seien kein Zufall, ist er überzeugt. "Es handelt sich vermutlich um sehr alte Mechanismen, die auf gemeinsame Urahnen von Säugetieren und Insekten zurückgehen." Wenn sich in der Natur ein Verfahren entwickelt hat, das sich bewährt, werde dieses eben evolutionär konserviert.

Durch die Spaltung wird das Speicherfett wieder verfügbar für den Körper. Diese Mobilisierung gehört zu den wichtigen Überlebensstrategien tierischer Organismen. Schließlich ist Fett ihre Hauptenergiereserve. Doch sind große Mengen Körperfett allein noch kein Garant fürs Überleben in Hungersnöten, man muss auch Zugriff auf die Fettdepots haben. Und genau diese Fähigkeit besaßen einige der Versuchsfliegen im Göttinger Labor nicht mehr oder nur in eingeschränkter Form. Bei ihnen waren bestimmte Mechanismen ausgeschaltet, von denen man weiß, dass sie für den Fettstoffwechsel wichtig sind. Der erste Gendefekt betraf die Brummer-Lipase. Den zweiten Defekt bauten die Forscher bei dem Rezeptor für das Hormon AKH ein, das einen Signalweg zur Mobilmachung der Fettreserven im Fettgewebe aktiviert.

Wie die Versuche mit den Drosophila-Mutanten zeigten, befanden sich Kühnlein und seine Kollegen bei ihrer Suche nach den zentralen Schlüsseln für die Fettmobilisierung auf der richtigen Spur. Taufliegen, deren Rezeptor für das Hormon AKH ausgeschaltet war, setzten mehr Fett an als normale Artgenossen, überlebten aber eine Nulldiät über längere Zeit. "Ihre Fähigkeit zur Fettmobilisierung war lediglich eingeschränkt", so Kühnlein. Gleiches gilt für jene Mutanten, bei denen das Brummer-Gen eliminiert war. Auch sie verfetteten deutlich, verhungerten aber erst nach längerem Nahrungsentzug. Schlechter erging es jenen Exemplaren, bei denen beide Gene, für Brummer und den AKH-Rezeptor, ausgeschaltet waren. Diese Doppelmutanten wurden viermal so fett wie normale Artgenossen, wobei sie selbst kurze Hungerperioden nicht überlebten. "Die hatten überhaupt keinen Zugriff auf ihre Fettreserven mehr", beschreibt der Göttinger Fliegenforscher seine Beobachtung. Für ihn ist damit das Fazit klar: "Es gibt in Drosophila also nur zwei Mechanismen der Fettmobilisierung. Denn wenn beide Mechanismen ausgeschaltet sind und die Fliegen allem Körperfett zum Trotz ohne Nahrung innerhalb kürzester Zeit sterben, kann es keinen dritten Weg geben, um an die Fettspeicher zu kommen."

Wie Kühnlein und seine Kollegen mit ihren Studien zeigten, eignet sich die kleine Taufliege durchaus als Modell für den Menschen. Zumindest, was den Fettstoffwechsel betrifft. Ob es allerdings auch beim Menschen nur zwei Mechanismen gibt, die Speicherung und Mobilisierung von Körperfett ausbalancieren, gilt es noch zu klären. "Im Menschen gibt es sehr ähnliche Rezeptoren wie den für AKH, die ebenfalls eine Rolle im Fettstoffwechsel spielen", gibt Kühnlein zu bedenken. "Das ist zwar keineswegs ein Beweis dafür, dass die Regulation des Fettstoffwechsels identisch ist zwischen Menschen und Fliegen, aber sehr auffällig."

Originalveröffentlichung:

Sebastian Grönke, Günter Müller, Jochen Hirsch, Sonja Fellert, Alexandra Andreou, Tobias Haase, Herbert Jäckle, Ronald P. Kühnlein
Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila
PLoS Biology, 7. Mai 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Fettreserve Fettstoffwechsel Mobilisierung Säugetiere Taufliege

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Form bleiben
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Intelligente Fluoreszenzfarbstoffe
16.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics