Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht steuert Nervenzellen

05.04.2007
Kommen wir einem grundlegenden Verständnis von Gehirnfunktionen demnächst etwas näher? In einer Kooperation mit Kollegen von der Stanford University und der Universität Frankfurt ist es Wissenschaftlern vom Max-Planck-Institut für Biophysik in Frankfurt gelungen, ein Werkzeug zu entwickeln, mit dem sich Nervenzellen in lebendem Gewebe innerhalb von Millisekunden an- und wieder abschalten lassen.

Als Schalter fungieren dabei ein aus einer Alge stammender lichtaktivierbarer Ionenkanal sowie eine ebenso durch Licht gesteuerte Ionenpumpe aus einem Archaebakterium. Beide gehören zur Klasse der mikrobiellen Rhodopsine, in die - wie beim Sehpurpur im menschlichen Auge - der Chromophor Retinal eingebunden ist. Die entsprechenden Gene wurden in Nervenzellen eingeschleust und führten dort zur Bildung funktioneller Proteine. Durch gezielte Aktivierung der Rhodopsine mit Licht unterschiedlicher Wellenlänge (d.h. Farbe) konnten die Forscher die Zellen unabhängig voneinander an- und abschalten. Durch diese elegante Manipulation der neuronalen Botschaften wird es nun möglich, die Rolle bestimmter Zellen in neuronalen Netzen zu erforschen. Die Wissenschaftler konnten ihr neues Werkzeug bereits am lebenden Tier testen: dem kleinen Fadenwurm C. elegans (Nature, 5. April 2007).


Hippocampus-Neuronen mit Halorhodopsin (NpHR) gekoppelt an einen gelb fluoreszierenden Farbstoff (eYFP) bzw. mit Channelrhodopsin-2 (ChR2) gekoppelt an einen rot fluoreszierenden Farbstoff (mCherry). Bild: Zhang et al., 2007

Das menschliche Gehirn ist das wohl faszinierendste Organ - die Frage, wie Informationen im Gehirn niedergelegt sein könnten und wie das Gehirn auf die Daten in diesem riesigen Informationsspeicher zugreift, beschäftigt die Menschheit schon seit langem. Erkenntnisfortschritte wurden oft mit neuen Techniken gewonnen, zu denen neben den verfeinerten elektrophysiologischen Methoden vor allem bildgebende, sogenannte Imaging-Verfahren gehören. Dennoch fehlte es bisher an geeigneten Werkzeugen, mit denen man Nervenzellen im intakten Hirngewebe nicht-invasiv präzise an- und abschalten kann, um ihren Beitrag im neuronalen Netzwerk nachzuweisen.

Zwei unscheinbare Mikroben haben den Wissenschaftlern vom Max-Planck-Institut für Biophysik in Frankfurt/Main und ihren Kollegen von der Univ. Frankfurt und der Stanford University in USA nun weitergeholfen: Dabei handelt es sich um das Archaebakterium Natronomonas pharaonis sowie die kleine Grünalge Chlamydomonas reinhardtii. Chlamydomonas besitzt einen als Channelrhodopsin-2 bezeichneten Ionenkanal (ChR2), der ursprünglich 2003 am Max-Planck-Institut für Biophysik charakterisiert wurde. Überträgt man das entsprechende Gen per Virus-Shuttle in Nervenzellen, so lässt sich der Kanal dort durch Licht in einem bestimmten Wellenlängenbereich (blau) aktivieren. Der daraus resultierende Einwärtsstrom von Kationen führt zu einer Depolarisation der Zellen und damit zur Auslösung von Aktionspotenzialen (Spikes) - die Nervenzellen werden quasi angeschaltet. Sobald der Lichtpuls aussetzt, schließt sich der Kanal wieder. Die elektrischen Botschaften der Nervenzellen - kodiert in der Spike-Frequenz - können also durch einen einfachen Lichtpuls gesteuert werden. Bereits 2005 hatten Alexander Gottschalk von der Universität Frankfurt, Georg Nagel - damals noch in der Abteilung Biophysikalische Chemie des Max-Planck-Instituts für Biophysik - und Ernst Bamberg (Direktor am MPI für Biophysik) mit ihren jeweiligen Mitarbeitern gezeigt, dass sich auf diese Weise in dem kleinen Fadenwurm Caenorhabditis elegans sogar Verhaltensantworten auslösen lassen.

Diese Vorgehensweise erlaubte jedoch nur eine Aktivierung der Zellen. Auf der Wunschliste der Forscher ganz oben stand daher ein Werkzeug, das es ermöglicht, Nervenzellen mit der gleichen zeitlichen Präzision, nämlich innerhalb von Millisekunden, abzuschalten - und zwar über einen Lichtpuls anderer Farbe. Im Fokus der Forscher: die Chloridpumpe Halorhodopsin. Ernst Bamberg hatte dieses Protein bereits früher mit Hilfe elektrischer Methoden detailliert auf seine Transporteigenschaften untersucht, und Georg Nagel war es in der Folge gelungen, Halorhodopsin aus Natronomonas pharaonis (NpHR) erstmals in tierischen Zellen zu exprimieren. Wurden die Zellen mit gelbem Licht beleuchtet, so kam es zu einem Einwärtsstrom von Chloridionen und infolgedessen zu einer Hyperpolarisation, die Aktionspotenziale hemmt.

Damit war der Grundstein für die vorliegende Nature-Veröffentlichung gelegt. Die Kollegen in Stanford fusionierten das NpHR-Gen mit einem fluoreszierenden Protein (eYFP) und schleusten es wiederum per Virus-Shuttle in kultivierte Hippocampus-Nervenzellen ein. Sie konnten nun mit gelbem Licht einzelne Aktionspotenziale ebenso wie eine ganze Salve von Spikes unterbinden. In einem nächsten Schritt verknüpften sie Channelrhodopsin-2 mit einer rot fluoreszierenden Protein-Variante (mCherry) und koexprimierten den Kanal aus der Alge und die Pumpe aus dem Archaebakterium in Hippocampus-Neuronen. Tatsächlich war es nun möglich, das Membranpotenzial in ein und demselben Neuron in beide Richtungen zu verändern: Blaue Lichtpulse lösten durch Aktivierung von ChR2 Aktionspotenziale aus, während gelbe Lichtpulse durch Aktivierung von NpHR die Aktionspotenziale löschten. "Dabei werden die grundlegenden elektrischen Eigenschaften der Zelle nicht beeinträchtigt", betont Georg Nagel, der heute eine Professur an der Universität Würzburg innehat.

Eine wichtige, noch zu beantwortende Frage war, ob mit diesem System auch das Verhalten eines Tieres in vivo kontrolliert werden kann. Für Channelrhodopsin-2 war das ja bereits für die Taufliege Drosophila und den Fadenwurm C. elegans gezeigt worden. Wieder arbeiteten die Max-Planck-Wissenschaftler mit dem Team des C. elegans-Experten Alexander Gottschalk zusammen. Wurde die Chloridpumpe NpHR in Nerven- oder Muskelzellen von C. elegans exprimiert, so führte Lichtaktivierung zum unmittelbaren Stopp (innerhalb von 150 Millisekunden) der Schwimmbewegungen (siehe Movie 1). Nach Beendigung des Lichtreizes kehrte der kleine Fadenwurm zu seinem natürlichen Schwimmverhalten zurück. "Auch die gemeinsame Expression des Kationenkanals mit der Chloridpumpe in C. elegans war erfolgreich", sagt Gottschalk.

"Das NpHR/ChR2-System erlaubt uns erstmals, Neuronen allein durch Licht auf einer Zeitskala von Millisekunden und mit extrem hoher räumlicher Auflösung, also im Mikrometerbereich, nicht-invasiv an- und abzuschalten. Damit kann durch die geeignete Wahl der Lichtpulssequenz der neuronale Code nachgeahmt oder verändert werden", erklärt Ernst Bamberg. "Wir haben mit den beiden lichtschaltbaren Proteinen den Neurobiologen ein sehr vielseitig anwendbares Werkzeug in die Hand gegeben, mit dem sowohl in neuronalen Zellkulturen als auch in transgenen Tieren völlig neuartige Untersuchungen durchgeführt werden können."

[CB]

Originalveröffentlichung:

Feng Zhang, Li-Ping Wang, Martin Brauner, Jana F. Liewald, Kenneth Kay, Natalie Watzke, Phillip G. Wood, Ernst Bamberg, Georg Nagel, Alexander Gottschalk & Karl Deisseroth; Multimodal fast optical interrogation of neural circuitry
Nature, 5. April 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics