Wenn Gene nicht entpackt werden können: Mausmodell für gestörten Histonstoffwechsel etabliert

Durch bestimmte Enzyme – sogenannte Histon-Acetyltransferasen (HAT) – wird die Bindung der Histone an die DNA vermindert, sodass die Gene entpackt und aktiviert werden können. Gegenspieler der HATs sind die Histondeacetylasen (HDACs), die die Verpackung und Inaktivierung von Genen verstärken und an vielen regulatorischen Prozessen beteiligt sind. Mäuse, die keine HDACs produzieren, sind wertvolle Modellorganismen, die verstehen helfen, welche Bedeutung HDACs für die Entstehung von Krankheiten haben, und welcher Nutzen von HDAC-hemmenden Medikamenten zu erwarten ist.

Wissenschaftlern des GSF – Forschungszentrums für Umwelt und Gesundheit (GSF), Mitglied der Helmholtz-Gemeinschaft, gelang es, eine Mauslinie zu erstellen, bei der das Gen für die Produktion einer der HDACs, der Histondeacetylase 2 (HDAC2), ausgeschaltet ist. Die Folgen dieses Defekts machen die Mäuse sowohl für die Krebs- als auch für die Herzforschung interessant.

„Es gibt elf klassische Deacetylasen. Die Kunst ist, herauszufinden, welche Deacetylasen welche Prozesse kontrollieren“, erklärt Professor Dr. Martin Göttlicher, der Leiter des GSF-Instituts für Toxikologie, der gemeinsam mit Wissenschaftlern des GSF-Instituts für Entwicklungsbiologie (IDG) die Etablierung der HDAC2-defizienten Mauslinie anregte.

Göttlicher selbst interessiert sich für Regulationsmechanismen, die zur Entstehung von Dickdarmtumoren führen – hier spielt HDAC2 wohl eine Rolle. Bereits von einigen anderen Tumoren ist bekannt, dass die durch Histondeacetylase verstärkte Verpackung offenbar Gene inaktivierte, die normalerweise die Zellen in den programmierten Zelltod (Apoptose) treiben. HDAC-Inhibitoren könnten eventuell die Apoptose wieder aktivieren und so das Tumorwachstum stoppen.

HDAC2 ist aber auch noch an anderen Prozessen beteiligt, z.B. beim Wachstum von Herzzellen. Deshalb kooperieren die GSF-Wissenschaftler auch mit einer amerikanischen Forschergruppe um Professor Jonathan Epstein (University of Pennsylvania), die besonders diesen Aspekt untersucht. Gemeinsam berichten die Wissenschaftler nun in der Fachzeitschrift Nature Medicine, dass HDAC2 bei der Entstehung einer krankhaften Vergrößerung des Herzens – der Herzhypertrophie – eine Rolle spielt. Wird das Herz z.B. durch Stress oder Überanstrengung überlastet, reagiert es durch Wachstum – es wird immer größer, dabei aber nicht effizienter. Letztendlich kann dies zur Herzinsuffizienz führen. Offensichtlich ist HDAC2 an dieser tödlichen Spirale beteiligt, denn die HDAC2-defizienten Mäuse zeigten auch bei starker Belastung keine Vergrößerung des Herzens. HDAC2 greift in einen Signalweg ein, der notwendig ist, um das hypertrophe Wachstum auszulösen. „Wenn man einen Weg findet, HDAC2 spezifisch zu hemmen, kann man eventuell ein Medikament gegen diese Krankheit entwickeln“, hofft Göttlicher.

Man darf nun aber nicht schließen, dass HDAC2 Aktivität ausschließlich nachteilig ist“, erklärt Dr. Thomas Floss (IDG), der die Mauslinie mit Hilfe der an der GSF gut etablierten Gene-Trap-Technologie erstellte: „Die Mäuse zeigen ohne HDAC2 verschiedene Beeinträchtigungen, sie sind z.B. deutlich kleiner als ihre Wildtyp-Geschwister“. Offensichtlich greift HDAC2 – wie alle Histondeacetylasen – in fein abgestimmte Regelkreise ein. Deshalb ist es für potenzielle therapeutische Ansätze vermutlich wichtig, Hemmstoffe zu finden, die nur ganz bestimmte HDACs selektiv ausschalten. „Die Frage ist, mit welchen einzelnen HDACs man interferieren muss, um Krankheiten zu bekämpfen, ohne dass andere für die Gesundheit wichtige Prozesse gestört werden“, betont Göttlicher – und die GSF-Mäuse sollen helfen, diese Frage zu lösen.

Online-Publikation: Nature Medicine, 18 February 2007; | doi:10.1038/nm1552
Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3ß activity;
Chinmay M Trivedi, Yang Luo, Zhan Yin, Maozhen Zhang, Wenting Zhu, Tao Wang, Thomas Floss, Martin Goettlicher, Patricia Ruiz Noppinger, Wolfgang Wurst, Victor A Ferrari, Charles S Abrams, Peter J Gruber & Jonathan A Epstein
Kontakt zur GSF- Pressestelle:
GSF – Forschungszentrum für Umwelt und Gesundheit, Dipl.-Ing. Heinz-Jörg Haury, Abteilung Kommunikation, Pressesprecher Tel: 089/3187-2460, Fax 089/3187-3324, E-Mail: oea@gsf.de

Media Contact

Michael van den Heuvel idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer