Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligente Gele können wie ein "chemischer Muskel" arbeiten

15.02.2002


Sechseck-Muster, das spontan bei der Bildung eines selbst-strukturierenden Hydrogels entsteht. In den blauen Bereichen ist das Polymer weniger stark vernetzt als innerhalb der gelben Flecken.


Komplexes Muster, das während der Polymerisation von Acrylamid in Gegenwart von Sulfid und Sauerstoff beobachtet wird. Das Muster entsteht durch die Wechselwirkung chemischer Reaktionen mit Diffusionsprozessen


Die so genannten intelligenten Gele haben im vergangenen Jahrzehnt zunehmend Beachtung gefunden. Die physikalischen Eigenschaften dieser wasserhaltigen Gele hängen von einem äußeren Reiz ab und können somit leicht kontrolliert werden. Das eröffnete viele Einsatzmöglichkeiten, besonders in der Medizin. Am Institut für Physikalische Chemie der Uni Würzburg werden intelligente Gele erforscht.

Bereits 1975 berichtete der japanische Forscher Tanaka, dass ein ursprünglich transparentes Polyacrylamid-Gel beim Abkühlen undurchsichtig wurde. Seither wurden diverse Gele gefunden, die auf die Änderung verschiedenster physikalischer und chemischer Parameter mit Veränderungen ihrer Eigenschaften reagieren. Dabei wandeln sich zum Beispiel Aussehen, Volumen oder Struktur des Gels.

Das eröffnet viele Einsatzmöglichkeiten für diese Materialien. Die größte Bedeutung ergibt sich in der Medizin: Hier könnten intelligente Gele dazu dienen, gezielt pharmazeutische Wirkstoffe freizusetzen. Dabei kann das Gel selbst als Reservoir für Wirkstoffe eingesetzt werden, es kann aber auch dem kontrollierten Verschluss von Poren eines Reservoirs dienen. Es ist bereits ein Gel bekannt, das auf die Glucosekonzentration reagiert und das somit grundsätzlich zur kontrollierten Freisetzung von Insulin im Körper des Menschen benutzt werden könnte.

Die Arbeitsgruppe von PD Dr. Arno Münster am Würzburger Institut für Physikalische Chemie verfolgt den Ansatz, die Palette der intelligenten Gele um solche zu erweitern, die auch auf interne Reize reagieren. In früheren, von der Deutschen Forschungsgemeinschaft (DFG) geförderten Arbeiten hat die Arbeitsgruppe die Musterbildung bei der Entstehung eines Polyacrylamid-Gels in Gegenwart einer nichtlinearen chemischen Reaktion, des "Methylenblau-Sulfid-Sauerstoff-Oszillators", untersucht. Bei dieser Reaktion beobachtet man stationäre, hoch geordnete Muster der Konzentration des Farbstoffes Methylenblau, die mit einer räumlichen Strukturierung der Geldichte korrespondieren.

Diese Arbeiten haben laut Dr. Münster deutlich gemacht, dass die Eigenschaften des Hydrogels durch eine an die Gelbildung gekoppelte nichtlineare Reaktion gesteuert werden können: "Das bei diesem Prozess entstehende Material gibt sich also selbst eine geordnete, mit bloßem Auge erkennbare Struktur."

Im Rahmen eines neuen, ebenfalls von der DFG geförderten Forschungsvorhabens untersuchen die Würzburger Wissenschaftler nun Volumenänderungen, die durch eine wellenförmig durch das Gel verlaufende Veränderung der Säureverhältnisse, eine so genannte chemische pH-Welle, ausgelöst werden.

Solche pH-Wellen können in einer Gelschicht von etwa einem Millimeter Dicke durch den Einschluss chemischer Stoffe erzeugt werden. Dank ihrer vergleichsweise langsamen Wanderungsgeschwindigkeit kann der Frontbereich der Wellen beobachtet werden.

Der Arbeitsgruppe von Dr. Münster ist die Herstellung eines Gels gelungen, das ähnlich wie ein Muskel chemische in mechanische Energie umwandeln kann. Angetrieben wird dieser "chemische Muskel" durch die im Gel ablaufenden Reaktionen. An der Front der pH-Welle ändert sich der pH-Wert um bis zu drei Einheiten. Das beeinflusst letzten Endes die Schwellfähigkeit und das Volumen des Gels, weil dessen Netzwerk funktionelle Gruppen besitzt, die in einem bestimmten pH-Bereich ein Proton aufnehmen und damit die Geleigenschaften verändern. Dadurch lässt sich eine "Stufe" von 50 Mikrometern bis 0,5 Millimetern Höhe beobachten, die über die Geloberfläche wandert.

Die pH-Welle kann wiederum von außen durch elektrische Felder kontrolliert werden. Dabei beschleunigt oder verlangsamt das Feld die Bewegung der mechanischen Welle. "Allerdings ist der Effekt des elektrischen Feldes nicht trivial. Vielmehr kann es zu einem komplexen Verhalten kommen, zum Beispiel zu raum-zeitlichen Oszillationen", so Dr. Münster. Ein wesentliches Anliegen des neuen DFG-Projektes sei es daher, diese komplexen Phänomene besser zu verstehen.

Weitere Informationen: PD Dr. Arno Münster, T (0931) 888-6305, Fax (0931) 888-6302, E-Mail: 
phch030@phys-chemie.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: DFG Gel Muskel Welle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bei Bakterien bestimmen die Nachbarn mit, welche Zelle zuerst stirbt: Physiologie des Überlebens
17.07.2019 | Technische Universität München

nachricht Fliegen verbreiten Krankheiten möglicherweise auch unter Affen
17.07.2019 | Max-Planck-Institut für evolutionäre Anthropologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Großes Potenzial: Aktoren und Sensoren mit 3D-Druck in komplexe Bauteile integrieren

Der additiven Fertigung wird eine große Zukunft vorhergesagt. So lassen sich mit Hilfe des 3D-Drucks beispielsweise die Anzahl der Komponenten komplexer, individualisierter Baugruppen stark reduzieren und viele Funktionen direkt in ein Bauteil integrieren. Das vereinfacht den Herstellungsprozess und verringert den notwendigen Bauraum. Um diese Vorteile auch für mechatronische Systeme zu nutzen, forschen Wissenschaftler im Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in mehreren Projekten an der additiven Fertigung von integrierten Aktoren und Sensoren. Diese können in Leichtbaustrukturen störende oder schädigende Vibrationen mindern sowie Strukturen überwachen.

Aufgrund der Ergebnisse ihrer Forschungsprojekte sehen die Wissenschaftler des Fraunhofer LBF großes Potenzial für die additive Fertigung mechatronischer...

Im Focus: Megakaryozyten als „Türsteher“ und Regulatoren der Zellmigration im Knochenmark

In einer neuen Studie zeigen Wissenschaftler der Universität Würzburg und des Universitätsklinikums Würzburg, dass Megakaryozyten als eine Art „Türsteher“ auftreten und so die Eigenschaften von Knochenmarksnischen und die Dynamik der Zellmigration verändern. Die Studie wurde im Juli im Journal „Haematologica“ veröffentlicht.

Die Hämatopoese ist der Prozess der Bildung von Blutzellen, der überwiegend im Knochenmark auftritt. Das Knochenmark produziert alle Arten von Blutkörperchen:...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt,...

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kosmos-Konferenz: Navigating the Sustainability Transformation in the 21st Century

17.07.2019 | Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Technik zur besseren Kontrolle für den Supervulkan von Campi Flegrei

17.07.2019 | Geowissenschaften

Bei Bakterien bestimmen die Nachbarn mit, welche Zelle zuerst stirbt: Physiologie des Überlebens

17.07.2019 | Biowissenschaften Chemie

Hocheffiziente Solarzellen dank solidem Fundament

17.07.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics