Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligente Gele können wie ein "chemischer Muskel" arbeiten

15.02.2002


Sechseck-Muster, das spontan bei der Bildung eines selbst-strukturierenden Hydrogels entsteht. In den blauen Bereichen ist das Polymer weniger stark vernetzt als innerhalb der gelben Flecken.


Komplexes Muster, das während der Polymerisation von Acrylamid in Gegenwart von Sulfid und Sauerstoff beobachtet wird. Das Muster entsteht durch die Wechselwirkung chemischer Reaktionen mit Diffusionsprozessen


Die so genannten intelligenten Gele haben im vergangenen Jahrzehnt zunehmend Beachtung gefunden. Die physikalischen Eigenschaften dieser wasserhaltigen Gele hängen von einem äußeren Reiz ab und können somit leicht kontrolliert werden. Das eröffnete viele Einsatzmöglichkeiten, besonders in der Medizin. Am Institut für Physikalische Chemie der Uni Würzburg werden intelligente Gele erforscht.

Bereits 1975 berichtete der japanische Forscher Tanaka, dass ein ursprünglich transparentes Polyacrylamid-Gel beim Abkühlen undurchsichtig wurde. Seither wurden diverse Gele gefunden, die auf die Änderung verschiedenster physikalischer und chemischer Parameter mit Veränderungen ihrer Eigenschaften reagieren. Dabei wandeln sich zum Beispiel Aussehen, Volumen oder Struktur des Gels.

Das eröffnet viele Einsatzmöglichkeiten für diese Materialien. Die größte Bedeutung ergibt sich in der Medizin: Hier könnten intelligente Gele dazu dienen, gezielt pharmazeutische Wirkstoffe freizusetzen. Dabei kann das Gel selbst als Reservoir für Wirkstoffe eingesetzt werden, es kann aber auch dem kontrollierten Verschluss von Poren eines Reservoirs dienen. Es ist bereits ein Gel bekannt, das auf die Glucosekonzentration reagiert und das somit grundsätzlich zur kontrollierten Freisetzung von Insulin im Körper des Menschen benutzt werden könnte.

Die Arbeitsgruppe von PD Dr. Arno Münster am Würzburger Institut für Physikalische Chemie verfolgt den Ansatz, die Palette der intelligenten Gele um solche zu erweitern, die auch auf interne Reize reagieren. In früheren, von der Deutschen Forschungsgemeinschaft (DFG) geförderten Arbeiten hat die Arbeitsgruppe die Musterbildung bei der Entstehung eines Polyacrylamid-Gels in Gegenwart einer nichtlinearen chemischen Reaktion, des "Methylenblau-Sulfid-Sauerstoff-Oszillators", untersucht. Bei dieser Reaktion beobachtet man stationäre, hoch geordnete Muster der Konzentration des Farbstoffes Methylenblau, die mit einer räumlichen Strukturierung der Geldichte korrespondieren.

Diese Arbeiten haben laut Dr. Münster deutlich gemacht, dass die Eigenschaften des Hydrogels durch eine an die Gelbildung gekoppelte nichtlineare Reaktion gesteuert werden können: "Das bei diesem Prozess entstehende Material gibt sich also selbst eine geordnete, mit bloßem Auge erkennbare Struktur."

Im Rahmen eines neuen, ebenfalls von der DFG geförderten Forschungsvorhabens untersuchen die Würzburger Wissenschaftler nun Volumenänderungen, die durch eine wellenförmig durch das Gel verlaufende Veränderung der Säureverhältnisse, eine so genannte chemische pH-Welle, ausgelöst werden.

Solche pH-Wellen können in einer Gelschicht von etwa einem Millimeter Dicke durch den Einschluss chemischer Stoffe erzeugt werden. Dank ihrer vergleichsweise langsamen Wanderungsgeschwindigkeit kann der Frontbereich der Wellen beobachtet werden.

Der Arbeitsgruppe von Dr. Münster ist die Herstellung eines Gels gelungen, das ähnlich wie ein Muskel chemische in mechanische Energie umwandeln kann. Angetrieben wird dieser "chemische Muskel" durch die im Gel ablaufenden Reaktionen. An der Front der pH-Welle ändert sich der pH-Wert um bis zu drei Einheiten. Das beeinflusst letzten Endes die Schwellfähigkeit und das Volumen des Gels, weil dessen Netzwerk funktionelle Gruppen besitzt, die in einem bestimmten pH-Bereich ein Proton aufnehmen und damit die Geleigenschaften verändern. Dadurch lässt sich eine "Stufe" von 50 Mikrometern bis 0,5 Millimetern Höhe beobachten, die über die Geloberfläche wandert.

Die pH-Welle kann wiederum von außen durch elektrische Felder kontrolliert werden. Dabei beschleunigt oder verlangsamt das Feld die Bewegung der mechanischen Welle. "Allerdings ist der Effekt des elektrischen Feldes nicht trivial. Vielmehr kann es zu einem komplexen Verhalten kommen, zum Beispiel zu raum-zeitlichen Oszillationen", so Dr. Münster. Ein wesentliches Anliegen des neuen DFG-Projektes sei es daher, diese komplexen Phänomene besser zu verstehen.

Weitere Informationen: PD Dr. Arno Münster, T (0931) 888-6305, Fax (0931) 888-6302, E-Mail: 
phch030@phys-chemie.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: DFG Gel Muskel Welle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Im Visier: die „kleinen Geschwister“ der Proteine
12.11.2018 | Technische Universität Berlin

nachricht Reparaturdefekt führt zu Chaos im Erbgut
12.11.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Forschungsschiff Polarstern startet Antarktissaison

Wie sieht es unter dem Schelfeis des abgebrochenen Riesen-Eisbergs A68 aus?

Am Samstag, den 10. November 2018 verlässt das Forschungsschiff Polarstern seinen Heimathafen Bremerhaven Richtung Kapstadt, Südafrika.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

Mehrwegbecher-System für Darmstadt: Prototyp-Präsentation am Freitag, 16. November, 11 Uhr

09.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein magnetisches Gedächtnis für den Computer

12.11.2018 | Energie und Elektrotechnik

Autonomes Parken wird erprobt

12.11.2018 | Informationstechnologie

Multicopter und Satelliten für den Rettungseinsatz

12.11.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics